澳门威斯尼斯人网址:世界科技(science and techno

来源:http://www.aviodelta.com 作者:澳门威斯尼斯人网址 人气:72 发布时间:2019-06-01
摘要:上回说到巴甫洛夫临终时提到遗传问题。欲说清此事,我们还得先退回半个世纪,从遗传学的奠基人孟德尔(1822-1884)讲起。 1965年夏天,世界各国的遗传学家应捷克斯洛伐克科学院的邀

  上回说到巴甫洛夫临终时提到遗传问题。欲说清此事,我们还得先退回半个世纪,从遗传学的奠基人孟德尔(1822-1884)讲起。

  1965年夏天,世界各国的遗传学家应捷克斯洛伐克科学院的邀请,云集在捷克布尔诺莫勒温镇的一座教堂里,纪念曾在这里进行过大量遗传学研究工作的近代遗传学奠基人格利戈·约翰·孟德尔的《植物杂交试验》论文发表100周年,缅怀这位默默无闻的科学家对人类作出的伟大贡献。100年前,这位基督教修道院院长凭着自己的智慧和毅力,孜孜以求地探索生物遗传的奥秘。并在1865年布尔诺的自然科学学会的报告会上宣读了他的研究成果。孟德尔通过8年的豌豆杂交实验,发现了遗传的分离规律和自由组合 (亦称独立分配)规律,即体细胞中成对的遗传因子在形成生殖细胞时相互分离,而不同对的遗传因子可以自由组合。但是,这一位对人类认识自然作出杰出贡献的伟大科学家,却遭到了历史的冷遇。他的学术思想与当时流行的融会遗传概念大相径庭,因而不能被当时的科学界理解和接受。他的论文发表之后,被人们忽视或遗忘达34年之久。

澳门威斯尼斯人网址 1

格雷戈尔·孟德尔是奥地利帝国著名的生物学家、神父,曾毕业于奥尔米茨大学、维也纳大学,被誉为代遗传学之父,是遗传学的奠基人。孟德尔通过著名的豌豆杂交实验发现了遗传学三大基本规律中的分离规律和自由组合规律,完成著作《植物杂交试验》。然而孟德尔的研究却被埋没,没有人相信他的遗传学规律,直到豌豆实验论文正式出版后34年人们才意识到他的成果。人物生平澳门威斯尼斯人网址:世界科技(science and technology)全景百卷书,果蝇的神话。 早年澳门威斯尼斯人网址 2孟德尔 1822年7月20日,孟德尔出生在奥匈帝国西里西亚海因策道夫村的一个贫寒的农民家庭里,父亲和母亲都是园艺家。孟德尔童年时受到园艺学和农学知识的熏陶,对植物的生长和开花非常感兴趣。 1840年他考入奥尔米茨大学哲学院,主攻古典哲学,但他还学习了数学。 1843年因家贫而辍学,同年10月年方21岁的孟德尔进了布隆城奥古斯汀修道院,并在当地教会办的一所中学教书,教的是自然科学。他由于能专心备课,认真教课,所以很受学生的欢迎。但在1850年的教师资格考试中,因生物学和地质学的知识过少,孟德尔被教会派到维也纳大学深造,受到相当系统和严格的科学教育和训练,也受到杰出科学家们的影响,如多普勒,孟德尔为他当物理学演示助手;又如依汀豪生,他是一位数学家和物理学家;还有恩格尔,他是细胞理论发展中的一位重要人物,但是由于否定植物物种的稳定性而受到教士们的攻击。这些为他后来的科学实践打下了坚实的基础。孟德尔经过长期思索认识到,理解那些使遗传性状代代恒定的机制更为重要。 1856年,从维也纳大学回到布鲁恩不久,孟德尔就开始了长达8年的豌豆实验。孟德尔首先从许多种子商那里弄来了34个品种的豌豆,从中挑选出22个品种用于实验。它们都具有某种可以相互区分的稳定性状,例如高茎或矮茎、圆粒或皱粒、灰色种皮或白色种皮等。 孟德尔通过人工培植这些豌豆,对不同代的豌豆的性状和数目进行细致入微的观察、计数和分析。运用这样的实验方法需要极大的耐心和严谨的态度。他酷爱自己的研究工作,经常向前来参观的客人指着豌豆十分自豪地说:“这些都是我的儿女!” 8个寒暑的辛勤劳作,孟德尔发现了生物遗传的基本规律,并得到了相应的数学关系式。人们分别称他的发现为“孟德尔第一定律”(即孟德尔遗传分离规律)和“孟德尔第二定律”(即基因自由组合规律),它们揭示了生物遗传奥秘的基本规律。 豌豆实验 孟德尔开始进行豌豆实验时,达尔文进化论刚刚问世。他仔细研读了达尔文的著作,从中吸收丰富的营养。保存至今的孟德尔遗物之中,就有好几本达尔文的著作,上面还留着孟德尔的手批,足见他对达尔文及其著作的关注。 起初,孟德尔豌豆实验并不是有意为探索遗传规律而进行的。他的初衷是希望获得优良品种,只是在试验的过程中,逐步把重点转向了探索遗传规律。除了豌豆以外,孟德尔还对其他植物作了大量的类似研究,其中包括玉米、紫罗兰和紫茉莉等,以期证明他发现的遗传规律对大多数植物都是适用的。 从生物的整体形式和行为中很难观察并发现遗传规律,而从个别性状中却容易观察,这也是科学界长期困惑的原因。孟德尔不仅考察生物的整体,更着眼于生物的个别性状,这是他与前辈生物学家的重要区别之一。孟德尔选择的实验材料也是非常科学的。因为豌豆属于具有稳定品种的自花授粉植物,容易栽种,容易逐一分离计数,这对于他发现遗传规律提供了有利的条件。 孟德尔清楚自己的发现所具有的划时代意义,但他还是慎重地重复实验了多年,以期更加臻于完善、1865年,孟德尔在布鲁恩科学协会的会议厅,将自己的研究成果分两次宣读。第一次,与会者礼貌而兴致勃勃地听完报告,孟德尔只简单地介绍了试验的目的、方法和过程,为时一小时的报告就使听众如坠入云雾中。 结论被埋没 第二次,孟德尔着重根据实验数据进行了深入的理论证明。可是,伟大的孟德尔思维和实验太超前了。尽管与会者绝大多数是布鲁恩自然科学协会的会员,其中既有化学家、地质学家和生物学家,也有生物学专业的植物学家、藻类学家。然而,听众对连篇累牍的数字和繁复枯燥的论证毫无兴趣。他们实在跟不上孟德尔的思维。孟德尔用心血浇灌的豌豆所告诉他的秘密,时人不能与之共识,一直被埋没了35年之久! 豌豆的杂交实验从1856年至1864年共进行了8年。孟德尔将其研究的结果整理成论文《植物杂交试验》发表,但未能引起当时学术界的重视!其原因有三个。 第一,在孟德尔论文发表前7年,达尔文的名著《物种起源》出版了。这部著作引起了科学界的兴趣,几乎全部的生物学家转向生物进化的讨论。这一点也许对孟德尔论文的命运起了决定性的作用。 第二,当时的科学界缺乏理解孟德尔定律的思想基础。首先那个时代的科学思想还没有包含孟德尔论文所提出的命题:遗传的不是一个个体的全貌,而是一个个性状。其次,孟德尔论文的表达方式是全新的,他把生物学和统计学、数学结合了起来,使得同时代的博物学家很难理解论文的真正含义。 第三,有的权威出于偏见或不理解,把孟德尔的研究视为一般的杂交实验,和别人做的没有多大差别。 孟德尔晚年曾经充满信心地对他的好友,布鲁恩高等技术学院大地测量学教授尼耶塞尔说:“看吧,我的时代来到了。”这句话成为伟大的预言。直到孟德尔逝世16年后,豌豆实验论文正式出版后34年,他从事豌豆试验后43年,预言才变成现实。孟德尔三大遗传定律澳门威斯尼斯人网址 3孟德尔 遗传学三大基本定律是孟德尔、摩尔根于1856-1864年期间提出来的。三大基本定律分别是基因分离定律、基因自由组合定律、基因连锁和交换定律。孟德尔通过豌豆实验,发现了遗传学三大基本规律中的两个,分别为分离规律及自由组合规律。 分离定律 在杂合子细胞中,位于一对同源染色体上的等位基因,具有一定的独立性;当细胞进行减数分裂时,等位基因会随着同源染色体的分离而分开,分别进入两个配子当中,独立地随配子遗传给后代。分离规律是遗传学中最基本的一个规律。它从本质上阐明了控制生物性状的遗传物质是以自成单位的基因存在的。 自由组合定律编辑 自由组合定律是在分离规律基础上,进一步揭示了多对基因间自由组合的关系,解释了不同基因的独立分配是自然界生物发生变异的重要来源之一。现代生物学解释为:当具有两对相对性状的亲本进行杂交,在子一代产生配子时,在等位基因分离的同时,非同源染色体上的非等位基因表现为自由组合。孟德尔获得成功的原因 1.正确选用实验材料。豌豆是严格的闭花自花授粉植物,在花开之前即完成授粉过程,避免了外来花粉的干扰。豌豆具有一些稳定的、容易区分的性状,所获实验结果可靠。 2.应用统计学方法分析实验结果。 3.从单因子到多因子的研究方法。对生物性状进行分析时,孟德尔开始只对一对性状的遗传情况进行研究,暂时忽略其他性状,明确一对性状的遗传情况后再进行对2对、3对甚至更多对性状的研究。 4.合理设计实验程序。如设计测交实验来验证对性状分离的推测。孟德尔的故事澳门威斯尼斯人网址 4孟德尔 1857年,捷克第二大城市布尔诺南郊的农民们发现,布尔诺修道院里来了个奇怪的修道士。这个“没事找事”的怪人在修道院后面开垦出一块豌豆田,终日用木棍、树枝和绳子把四处蔓延的豌豆苗支撑起来,让它们保持“直立的姿势”,他甚至还小心翼翼地驱赶传播花粉的蝴蝶和甲虫。这个怪人就是孟德尔。 在其他修道士眼中,孟德尔的样子是使人过目不忘的:“头大,稍胖,戴着大礼帽,短裤外套着长靴,走起路晃晃荡荡,却有着透过金边眼镜凝视世界的眼神。” 孟德尔出身于贫寒农家,很喜欢自然科学,对宗教和神学并无兴趣。为了摆脱饥寒交迫的生活,他不得不违心进入修道院,成为一名修道士。 当时的欧洲,人们热衷于通过植物杂交实验了解生物遗传和变异的奥秘,而研究遗传和变异首先要选择合适的实验材料,孟德尔选择了豌豆。1857年夏天,孟德尔开始用34粒豌豆种子进行他的工作,开始了被人称为“毫无意义的举动”的一系列实验,并持续了8年时间。人物评价 这位生前默默无闻的先驱又重新获得了高度评价,他的论文也被公认为开辟了现代遗传学。

托马斯·亨特·摩尔根生于美国肯塔基州的列克星敦,是著名的实验胚胎学家、遗传学家,曾担任美国全国科学院院长、美国遗传学会主席等职务,获得了诺贝尔生理学或医学奖、达尔文奖章、科普勒奖章等荣誉。那么,摩尔根著名的果蝇杂交实验是怎么回事?澳门威斯尼斯人网址 5摩尔根 摩尔根果蝇杂交实验 在1910年5月,在摩尔根的实验室中诞生了一只白眼雄果蝇。摩尔根把它带回家中,把它放在床边的一只瓶子中,白天把它带回实验室,不久他把这只果蝇与另一只红眼雌果蝇进行交配,在下一代果蝇中产生了全是红眼的果蝇,一共是1240只。后来摩尔根让一只白眼雌果蝇与一只正常的雄果蝇交配。却在其后代中得到一半是红眼、一半是白眼的雄果蝇,而雌果蝇中却没有白眼,全部雌性都长有正常的红眼睛。摩尔根对此现象如何解释呢?他说:“眼睛的颜色基因与性别决定的基因是结在一起的,即在X染色体上。”或者像我们现在所说那样是链锁的,那样得到一条既带有白眼基因的X染色体,又有一条Y染色体的话,即发育为白眼雄果蝇。 摩尔根及其同事、学生用果蝇做实验材料。到1925年已经在这个小生物身上发现它有四对染色体,并鉴定了约100个不同的基因。并且由交配试验而确定链锁的程度,可以用来测量染色体上基因间的距离。1911年他提出了“染色体遗传理论”。果蝇给摩尔根的研究带来如此巨大的成功,以致后来有人说这种果蝇是上帝专门为摩尔根创造的。摩尔根发现,代表生物遗传秘密的基因的确存在于生殖细胞的染色体上。而且,他还发现,基因在每条染色体内是直线排列的。 染色体可以自由组合,而排在一条染色体上的基因是不能自由组合的。摩尔根把这种特点称为基因的“连锁”。摩尔根在长期的试验中发现,由于同源染色体的断离与结合,而产生了基因的互相交换。不过交换的情况很少,只占1%。连锁和交换定律,是摩尔根发现的遗传第三定律。他于20世纪20年代创立了著名的基因学说,揭示了基因是组成染色体的遗传单位,它能控制遗传性状的发育,也是突变、重组、交换的基本单位。但基因到底是由什么物质组成的?这在当时还是个谜。1933年,摩尔根获得诺贝尔生理医学奖。 摩尔根遗传第三定律 基因的连锁与互换规律是遗传学的三大定律之一。 摩尔根在对果蝇进行杂交试验观察后得出。具有两对或两对以上的相对性状的亲本杂交,子一代减数分裂产生配子时,位于同源染色体上的非等位基因连锁遗传给后代,这个称为“连锁”遗传。位于同源染色体上的非等位基因在减数第一次分裂的四分体时期有一定的交叉互换,产生重组配子,遗传给后代,这个称为“互换”。

  凡一个伟人,在其成名之后,总可以从他长成的过程中寻找到一点成功的因素。若也用这个道理来分析孟德尔的少年时代,那么可用两个字来概括,一是“美”,二是“苦”。

  格利戈·约翰·孟德尔祖籍德国,于1822年7月22日出生在摩拉维亚的海钦道夫(现属捷克的海恩西斯),那里属于奥地利西里西亚的德语区。孟德尔出生的村庄素有“多瑙河之花”的美称,村人都爱好园艺。孟德尔的父亲是一位农民,在农务之余,极爱栽种花草果树。幼年的孟德尔经常随父亲在花园干些轻微的劳动。孟德尔6岁时就在本村唯一的一所小学里读书,他学习努力,仅用4年的时间就学完了小学的全部程。小学附近有一个小花园,专供学生课余时间种植花卉、果树及养蜂之用。孟德尔自幼就受到这种环境的熏陶,接受植物栽培、管理等方面的知识和训练。1832年孟德尔以全校第一名的成绩考入邻村的一所初级中学。1年后,他远离家乡,只身去外地求学。这期间,他的父亲因在一次劳动中受伤,丧失了劳动力,家境困难,无力在经济上给他更多支持,孟德尔就利用假期到学校附近的农庄打工。就在这种艰苦的条件下,他度过了6年的中学生活,并以优异的成绩获得毕业文凭。为了将来能成为一名牧师,1840年孟德尔考入奥尔米茨大学哲学院学习哲学。1843年结业后,他经克尔·法朗兹教授的推荐,成为布尔诺奥古斯丁教派的康尼格克洛斯特修道院的教士,1847年升任该修道院的神父。1851年,孟德尔经修道院院长的推荐进维也纳大学学习,开始接受大学的系统教育。在这座著名的高等学府里,他曾听过进化论先驱者之一、著名植物生理学教授弗朗士·翁格尔的植物学课;著名的物理学家安德烈·冯·埃丁豪森的数学、物理学课;以及著名的物理学家克里斯坦·多普勒开设的实验物理学课。孟德尔如饥似渴地学习,在基础知识和基本操作方面打下了坚实的基础。同时,这些学者的广博知识和科学思想方法对他日后在遗传学研究上的突破有着很大的影响。1853年8月,孟德尔结束了维也纳大学的学习生活回到了布尔诺,并在一所中学兼任代课教员。布尔诺修道院有一所植物园,在这座植物园里,孟德尔开始了开创性的植物杂交试验,并获得历史性的发现。

黑腹果蝇

  孟德尔出生于奥地利一个叫海因申多夫的乡村,这里森林被野,鲜花遮径,气候湿润温和,有“多瑙河之花”的美名。孟德尔的父亲在家乡务农,也很留心于园艺。孟德尔从小就受这样一个极美的自然环境的薰陶,对植物的生长、开花极感兴趣。他经常想:为什么不同的植物会开不同的花,结不同的果?而海因申多夫庄园的女主人瓦德堡伯爵夫人也是一个热心科学事业的人,她坚持在本地学校中增加了一门《自然》课,这对孟德尔实在是一大幸事。

  1855年,孟德尔开始对豌豆进行杂交试验。他期望通过对植物遗传的研究,揭示人类遗传的奥秘。当时许多国家的科学院对研究植物性别和杂交问题悬赏奖金,提供了大量关于各种不同植物(例如玉米、豌豆、小麦、苹果、梨)杂交试验的材料。所有的结果都表明,杂交产品有某种程度的稳定,也有某种程度的可变性。但是弄清产生品种特性或物种特性的内在因素的问题,却仍然悬而未决。孟德尔在掌握先辈们经过大量工作而获得的知识的情况下,开始了自己的豌豆杂交实验。在这方面,不仅表明他是一位天才的实验家,而且是一位了解先辈们工作中的缺点和局限性的理论家。第一,孟德尔只限于研究非常少的明显的不同特点;第二,他观察的不是一个或少数几个个体,而是观察种群和大量的类群。

  两千多年前,一种如米粒般大小的昆虫引起了亚里士多德的兴趣。那时候,这位伟大的哲人正在思考生物发生的奥妙。不幸的是,他认为这种小小的昆虫,看起来似乎来自于水果的粘液。很长时间以来,人们把果蝇这种生物归入Oinopta(嗜酒者)属,的确,这种昆虫嗜好那些因发酵而散发出酒香味的腐败水果。然而,随着生物分类研究的兴起,嗜酒者这样的名字实在难登学术的大雅之堂,于是分类学家用Drosophila代替了Oinopta,果蝇于是从一个嗜酒之徒摇身一变成为“爱露者”,这样的属名,在中国文化的语境中可真是颇有仙灵之气。

  但是,孟德尔在这样美的自然环境里却过着很清苦的生活。他小学毕业后进了附近的中学,父母供不起他的一日三餐,他半饥半饱地读了六年,虽勉强毕业,身体却大伤元气,经常闹病。虽然他在学校成绩极好,人又聪明,但是他明白,家里是无论如何再供不起他上大学了。恰在这时父亲在一次砍树时被砸伤,再无力气种地,便索性将地买掉,将钱分给孟德尔和他的姐姐泰妮莎。泰妮莎的这份钱是准备作嫁妆的,但是她看到弟弟聪明好学,便说:“不要因为缺钱耽误了你的前程,你把我这份钱拿去读书吧。”孟德尔就靠着这点钱,又半饥半饱地读了四年大学。正像在小学阶段时多亏有一个热爱自然的伯爵夫人一样,在大学里孟德尔又遇见一个好的数学老师——富克思博士。这一段打下的数学基础,竟是他以后在生物学上有所发现的关键。

  孟德尔从种子商人那里买来了34个豌豆品种,经过2年的试种,从中挑选出具有稳定相对性状的22个品种,连续7年在修道院内不到2400平方英尺的园地里,进行一系列的杂交试验。他精心观察,并且按照杂交后的世代顺序,对后代中不同性状的个体数目进行统计,探索性状传递的遗传规律。

澳门威斯尼斯人网址:世界科技(science and technology)全景百卷书,果蝇的神话。今日世界上最为人所知的果蝇产自东南亚,在1830年它被命名为Drosophila melanogaster,melanogaster是黑肚子之意,也即黑腹果蝇。或许改名确实给果蝇带来了奇迹般的好运,这个体型微不足道的昆虫,在约百年后,一跃成为人世间最知名的昆虫之一。但在此之前它首先得去往新大陆才行,不过这件事难不倒它。持续数百年的大航海时代,使得东南亚的香蕉得以在十九世纪晚期被贩卖到新大陆,黑腹果蝇追随而去,旋即在新大陆繁衍开来,生生不息,由此开创出一段生物学史中最令人瞩目的传奇之一,人类文明也就此奠定经典遗传学的根基。现在,就让我们追随着果蝇的翅膀,再次回到那段生命科学史上激情肆溢、英豪辈出的纷争岁月,重温一次经典诞生的历程。

  大学毕业时,吃尽了生活之苦的孟德尔决心要找一个再不为糊口操心的行业,以便能安心做学问。他去请教老师,老师说:“要是这样的话,你最好去当修士。”于是,1843年10月9日,孟德尔进了设在郡尔特伯伦的修道院。说来也巧,在孟德尔来这里之前,修道院里就有一名叫萨勒的神甫极喜好植物。他主持在院里开辟了一个很大的植物园,花草树木一片葱茏,就和孟德尔小时候所在的庄园一般可爱。但是这萨勒有一样坏毛病,就是极爱喝酒,常常在镇上酒店里深夜不归。院长觉得这有损修道院的名声,便在一天晚上等在院门口,见他摇摇晃晃地走来,便大喝一声:“好大胆的萨勒,你这副样子还配做一名神甫吗?”这萨勒还沉迷在酒后的心荡神摇之中,一听这话,便向院长鞠了一躬说:“主啊,我是不配进你这个门了!”说罢竟扬长而去了,再不归来。他这一去不归,倒给孟德尔留下了一个园子,留下一块好的实验基地。

  孟德尔选择了7组相对性状的豌豆进行杂交试验:

摩尔根的成长

  各位读者,关于遗传问题在孟德尔之前早有许多生物学家众说纷纭,各抒己见了,但是都没有实验根据。许多国家的科学院还专门为此特设悬赏奖金。到孟德尔着手这一问题时,达尔文已就物种起源做了较透彻的研究,但是都未能回答生物进化中遗传与变异的具体根据。于是孟德尔就决心站在达尔文的肩膀上,开始更上一层楼。

  1.种子:圆的——有皱纹的或者有棱角的;

澳门威斯尼斯人网址 6

  现在孟德尔有了修道院这个“铁饭碗”,再不用为吃穿发愁,又有了萨勒留下的一座好园子,万事俱备,就只等他一展抱负了。

  2.子叶:黄色——绿色;

Thomas Hunt Morgan

  他仔细分析了他的前辈们的工作,发现他们一是没有抽出生物的主要性状来研究,许多现象混杂在一起,很难分清遗传的脉络;二是大多局限于个体观察。这样偶然性很大,差异很大,难以概括出规律。于是,孟德尔就选了碗豆来做他的实验材料,因为这种植物是自花授粉,不怕外界的干扰。他在窗后园子里专辟了一块地,从种子商人那里收集了32个品系的碗豆,仔细种植、提纯,最后选出22种。各位读者,你道这22种碗豆是什么样子,其他次要的特徵不说,你只要往地里一站就看出它们有七对正好对应又截然不同的性状,这就是种子有圆有皱;叶子有黄有绿;种皮有灰有白;豆莱有饱有瘪;荚皮有绿有黄;花位有腋生顶生;茎杆有高有低。虽说是碗豆长在地里,可是倒像摆在商店里的货色一样,这般齐全又这般巧合。说来容易,要知孟德尔为选出这些性状明显的品种已经整整费了七年心血,寒来暑往,其间辛苦自不必说了。但是,这才只是准备好了实验材料。

  3.种皮:白色——灰色;

1866年,托马斯·亨特·摩尔根在美国南方的列克星敦出世,但他总喜欢说自己在1865年获得生命。1865年是美国内战的最后一年,摩尔根家族的许多成员都卷入这场战争,联系到摩尔根后来的卓越成就,这一年对摩尔根来说真是具有双重意味。因为,1865年正是孟德尔利用豌豆作为实验材料,历经数载终于发现,并发表了其遗传定律的年份。因此有人调侃说,1865年可真是一个适合孕育未来遗传学家的大吉之年,但细察摩尔根的研究生涯,他成为一名遗传学家实在是天意弄人。

  现在孟德尔认为品种已经很纯,实验可以开始了。于是他就按照对应品种一一杂交,抛开其他特徵,先观察最主要的性状,若它们的杂交一代(F1)与父母到底有什么不同。谁知这新长出来的子一代,只清一色的继承父母之中一方的特性。比如高株和矮株杂交,所得全是高株;灰色和白色杂交,所得全是灰色。孟德尔把高、灰等这类保留下来的特徵叫做“显性”,矮、白等叫做“隐性”,这些性状被隐去了。但是他没有灰心,第二年又用上年得到的杂交子一代(F1)进行自交(F1×F2),所得的种子再播种,生成子二代(F2)。这一下奇怪的现象又出现了,和子一代的清一色不同,子二代不但有显性性状,而且曾经消失了的隐性性状又出现了。孟德尔一口气又种了278个杂交组合,授粉之后他给碗豆套上布袋,小心地观察记录。这样又经过几年的种了收,收了种,从花色上杂交对比,从种籽上杂交对比等等,翻来覆去地排列组合。现在他那间修士住的小屋里除了圣经之外,架子上已堆满了许多小布口袋,里面鼓鼓囊囊全是碗豆,上面还标着F1、F2;高、矮;黄、绿等,只有他自己才能看懂的字和符号。

  4.荚果形状:拱凸形——缢缩形;

摩尔根在十四岁时进入肯塔基州立学院预科学习博物学,于1886年获得理学学士学位,是当年唯一一位获得该学位的毕业生。不愿意经商的摩尔根选择了去霍普金斯大学攻读生物学硕士学位。正是在那里——当时全美最适合学习生物学的地方——摩尔根从一个单纯的描述生物现象的博物学家转变为一个实验生物学家,并由此获得了他终生信奉的科学研究原则。

  1865年,新年刚过,这天孟德尔又坐在桌子旁。他将圣经推到一边,顺手拾起一个种籽口袋,沉甸甸的,心头一阵欢喜,忽然想起自己和这些圆滚滚的小家伙打交道不觉已有十年。再看看架子上那些小布袋,还有那厚厚的一本本观察记录,觉得资料已经不少,也该分析整理一下了。

  5.荚果颜色:绿色——黄色;

“实验方法的本质在于要求每一种见解(或假说)都必须通过实验的检验,然后才得以承认其科学地位……。研究者必须养成一种对一切假说(特别是对自己提出的假说)的怀疑心理,而且一旦证明其谬误,要勇于抛弃之。”

  各位读者,我们前面说过孟德尔在上大学时曾得到一位数学教授的指导,所以他与别的搞生物的人不同,除了勤于观察之外,还特别留心数据的对比分析。现在他将记录本搬开,将十年所得的数据抄在一张纸上,反来倒去地演算。不一会他就列出前面这样一张表来。

  6.花的位置:轴生的——顶生的;

这种信念使得摩尔根即敢于反对权威也勇于犯错和改正自己的错误,这种勇气和理性是他同时代的科学家中非常罕见的。实际上,摩尔根常常自嘲自己所做的实验可以分为三类:

  
性状       显性植株数     隐性植株数    F2一代的显隐比例
种子的形状    5474 (圆)     1850 (绉)       2.96:1
子叶的颜色    6022 (圆)     2001 (绿)       3.01:1
种皮的颜色    705 (灰)      224 (白)        3.15:1
豆荚的形状    882 (膨大)     299 (皱缩)       2.95:1
未熟豆荚的颜色  428 (绿)      152 (黄)        2.82:1
花的位置     651 (叶腋)     207 (顶端)       3.14:1
茎的高度     787 (高)      277 (矮)        2.84:1

  7.花轴:高茎——矮茎。

  • 愚蠢的实验
  • 蠢得要命的实验
  • 比第二类还糟糕的实验

  
孟德尔仔细分析了表的最后一列,发现不管前面两列数字多么不同,但在这一列中比例却都近似于3:1,他不觉高兴地大喊一声:“秘密原来在这里!”从这些数字中孟德尔看到隐性性状并没有消失,它还是传下来了。他假设,每个生物细胞中都有控制性状的因子(我们今天叫基因),因子在细胞中是成对的,到了受精时,精子与卵子就各带一个因子,又结合成一对新的因子。这就是生物遗传的分离定律,即遗传学第一定律。

  他不得不排除那些没有明显区别的所有特点。为了避免自花授粉,他提前摘去了雄蕊;为了防止所不希望的那种异花授粉,他用一只小纸袋把花套上。为了尽量避免产生偶然的结果,他又努力培植了尽可能多的植株。他分析的主要不是个别的个体植株,而是种群中普遍出现的植株。这样,他成功地用挑选出来的22种豌豆品种,培养出5000多株豌豆植株。

1886年,获得生物学硕士学位的摩尔根已小有成就。母校肯塔基州立学院邀请他回校任博物学教授,但此时的摩尔根已经难以割舍实验生物学的诱惑。霍普金斯大学为他提供了一笔的优厚奖学金,摩尔根因此有机会前往马萨诸塞州的伍兹霍尔海洋生物学实验室,去完成他的博士论文。

  这就可以清楚地说明,在子一代时,隐性因子与显性因子结合,它被掩盖,所以全表现为显性(加高茎)。但是掩盖并不一定消失,到子三代时,就可能出现纯显性因子结合、显隐性因子结合及纯隐性因子结合三种情况,它在比例上是1:2:1,但显、隐结合时外表仍是显性,所以显、隐的总比例就是3:1。再往下繁殖一代时,显、隐结合的那一部分(即“2”)又可分成1:2:1,这样显性、隐性的近传就会准确无误地永远传下去。这就说明,为什么高个子的父亲和低个子的母亲所生的孩子,不一定都是他们的平均高度。否则,全世界的人早就是一样的高了。

  孟德尔把每一组的两个可区分性状的植株,通过杂交授粉,产生出第一代 (F)杂种。他发现在每一组中杂种的性状表现,都完全像或几乎完全像

摩尔根别出心裁的用蜘蛛蟹的胚胎发育过程,证明了蜘蛛蟹这名字不是白叫的,它就该被分类到蜘蛛纲中去,横扫了此前的所有唧唧歪歪。据传,他那长达87页的论文,差点让《霍普金斯大学生物实验室研究报告》杂志因此破产。

  一对性状杂交的子三代是3:1,要是两对性状呢?比如黄色圆形种子和绿色皱皮种子,它们的子三代是什么样子呢?这就有四种情况:黄色圆形、黄色皱皮、绿色圆形、绿色皱皮,比例为9:3:3:1。纯显、隐性遗传是3^2:1^2。要是三对性状呢,正好是3^3:1^3,依此类推。就是说,这些性状都会参加组合,进行遗传。这样孟德尔又得出一条自由组合定律,即遗传学第二定律。

  1两个亲本中的一个。孟德尔把在杂交时保持不变或几乎不变地传给后代的那些性状称为显性;而在杂种中隐而不见,或者潜伏起来的性状称为隐性。F

摩尔根就此迷上了胚胎学,终其一生,他坚持认为自己首先是一名胚胎学家,并且始终没有真正停止过胚胎学方面的研究。但现在早已无人关心他在胚胎学方面所作的贡献,即使是胚胎学界的后辈们也是如此。从某种程度上而言,这也可算是摩尔根个人的不幸吧,他在经典遗传学上的辉煌成就,使得他在其它诸多领域上的研究黯然失色,但公平的说,摩尔根在胚胎学、动物再生能力等研究领域提出过一系列深刻的问题,直到今天也仍然没有被真正解决。

  各位读者,故事说到这里,您也许会想起这套书第23回曾讲到一个人,他的研究方法与孟德尔多么相似。那就是开普勒,他也是将多年测得的行星运行数据这样列表推算,从最后两列中发现了其中的规律,从而确立了开普勒定律。这说明科学研究除了观察、实验之外还要善于运用数学统计分析。许多规律和发现不是直接用眼看见、手摸着的,而是用笔、用计算机算出来的。读者诸君中也许有正在中学读书就学的,千万不敢看轻了数学的学习,现在看来枯燥的数字、字母,将来都是冶学的得力武器,请大家记住马克思的这句名言:“一种科学只有成功地运用数学时,才算达到了真正完善的地步。”

  1自花受精产出F,这时孟德尔发现原先隐而不见的隐性性状得到了表现的机

1891年,获得博士学位的摩尔根,前往布林莫尔学院出任生物学副教授,潜心研究他的海洋动物胚胎发育。因为发现没有受精的海胆卵可以在高渗盐水的刺激下开始发育,这使他顺利升任正教授。然而摩尔根平静的胚胎学家生活在近不惑之龄被打破,他的老朋友,细胞生物学家威尔逊邀请他前往哥伦比亚大学,出任全美第一位实验动物学的教授职位,并承诺他的主要工作是做研究而不是上课。到此,折磨生物系学生的那个摩尔根即将登场。而威尔逊显然为此特别特别自豪,毕竟不是每个人都有机会当伯乐的。

  再说孟德尔发现了遗传规律后,1865年正好在布隆城召开一个奥地利自然科学会议,他就兴冲冲地到会宣布了这一成果,但是台下的人没有一人能听懂他在说什么。第二年,他又写了一篇论文,公开发表,还把这论文分送到欧洲的120个图书馆里去,但是谁也没有注意这篇文章。孟德尔还是在园子里安静地摆弄那些花草、蜜蜂,他对自己的朋友尼斯尔说:“让那些论文先睡上几十年觉吧,我相信,承认我的一天终将到来。”

  2会。统计显性植株与隐性植株的比率为3∶1。如红花和白花植株进行杂交,得到的第一代 (F)的个体外表上都是呈红色的。这种表现显性性状的植株

超级戏法般的孟德尔因子

  没有人理孟德尔的论文,倒不是大家有什么偏见,因为他超越时代实在太远了。“超前性”是任何伟大理论的共同特点。麦克斯韦1864年发表电磁理论,1888年赫兹才证实电磁波的存在,他超前了24年,门捷列夫1869年发表元素周期律,1875年布瓦博朗德发现镓,才证实了周期律,他超前了六年,爱因斯坦1905年提出质能互变E=mc^2,1945年第一颗原子弹爆炸,他超前了40年。当孟德尔在1866年发表遗传定律时,他奇怪为什么没有人响应,但是他不知道,他的理论比实践超前了34年。只有等人们对微观细胞有了进一步的研究后才能验证他的理论。

  1F再予自花授粉,那么在第二代(F)的性状就会发生分离。孟德尔得到929

1900年,伴随着孟德尔遗传定律的再发现,生物学界一时为之沸腾。然而孟德尔遗传定律的再发现为什么会引起如此大的波澜?这是因为当时,大伙儿虽然已经接受了,达尔文关于生物是进化而来的推断,但进化的机制是不是自然选择,却众说纷纭未有定见。要明了进化的奥妙,首要问题之一就是解决生物的遗传机制。换句话说,在那个时代,谈论生物遗传是依托在生物进化这个大背景中的一个重要话题。对生物进化的热切讨论众说纷纭,正是时代呼唤遗传学问世的契机。因此孟德尔遗传定律的再发现,立刻引起了广泛关注,并最终催生了一门新的学科——遗传学。

  果然,这一天来到了。1900年春天荷兰的德弗里斯、德国的柯伦斯和奥地利的丘歇马克都各自独立地通过实验得出如我们叙述过的哪种遗传规律的结论。但是当他们在发表论文前查阅文献资料时,又都同时发现孟德尔早已有言在先。孟德尔的论文在图书馆里被尘土封埋了34年后又这样戏剧性地被重新发现了。

  棵子二代豌豆植株,其中红花705棵,白花224棵,显性性状的红花与隐性性状的白花之比是3.15∶1。他还对其他6对性状进行试验,获得了同样的结果:显隐性之比近似于3∶1。

摩尔根在1903年的一本专著《进化与适应》中对孟德尔学说大加赞赏,认为建立在实验根基上的孟德尔遗传定律即简洁明了又适用广泛。其后他还撰写了多本有关进化的专著,当然他没有忘记他的胚胎学家身份,强调研究进化应该以胚胎发育为重点而不是古生物学。然而当他用家鼠作实验材料,试图重现孟德尔式遗传现象时,很快发现生物性状的遗传规律并非那么简单,事实上这也正是孟德尔的研究在当年未受到应有重视的重要原因。他开始怀疑所谓孟德尔因子(基因)是否真的独立存在,并在世代相传中进行自由组合——即著名的孟德尔分离定律和孟德尔自由组合定律。

  孟德尔理论的重新被重视,还得感谢细胞学说的进步。原来1879年德国生物学家弗莱明发现了一种办法,用硷性染料可以把细胞核内的微粒状物质染成黄色,而且再不会褪色。有了这个标记,观察起来就十分方便。弗莱明发现这些微粒先变成丝状,这细胞再断裂成数目相同的两半,一个细胞就变成两个,细胞原来是这样分裂的。1880年德国生物学家就把这种能染上色的微粒叫做“染色体”,就是我们现在常说的这个名词。1900年孟德尔学说重新发现不久,过了四年,美国细胞学家萨顿突然想到,孟德尔说遗传因子成只成对,我们细胞学界说染色体成双成对,这两个怕就是一回事吧?渐渐的遗传规律就要到细胞内部来寻找根据了。

  孟德尔对此提出这样的假设:在每一个植株中的每一相对性状均来源于两个相同的“基因”(当时孟德尔称之为“遗传因子”),显性基因表现为显性性状,隐性基因表现为隐性性状。当纯系的红花(基因型为CC)与纯系的白花(基因型为cc)这一对不同性状杂交时,CC提供一个C为配子(生殖细胞),cc提供一个c为配子,受精时雌雄生殖细胞结合为合子,基因型为Cc。因C对c是显性,所以产生的第一代杂种F均表现为红花。当F自花授

到了1909年,摩尔根认为孟德尔得到的赞誉超过了他学说的真实价值,甚至有将遗传学研究导入了歧途的可能性,也许只有豌豆等极少数物种,才符合孟德尔所发现的遗传规律?为此,他曾在美国育种协会的一次会议上发表尖刻评论,抨击人们对孟德尔学说的盲目热情,

  这时在美国有一个生理学家叫摩尔根,(1866-1945)他有间奇怪的实验室,里面只有几张旧桌子和几千只瓶子。就靠这些瓶子,他培养了几万只果蝇。这东西繁殖率高,生活史短,便于观察。摩尔根本是不相信孟德尔学说的,但是1910年的一天,他偶然发现许多红眼果蝇中出现了一只白眼果蝇。他出于好奇,便想:我何不也做一次杂交试验。他让红白果蝇杂交,结果,下一代全是红眼,显然红对白来说表现为显性,正合孟德尔的碗豆试验。他不觉暗吃一惊。他又使子一代交配,子三代中的红白比例正好是3:1,这下摩尔根对孟德尔五体投地了。

  粉,即Cc×Cc时,雌雄各有两种配子,C和c,两种配子之比是1∶1。受精时产生4种不同组合的基因型:CC、Cc、cC、cc。同样C对c是显性,在表现型上CC、Cc和cC的基因植株都表现为红花,而cc植株表现为白花。所在子二代 (F)植株中表现红花与白花之比为3∶1。

“……当今,在解释孟德尔学说的过程中,一些事实很快被转换成‘因子’。如果一个因子不能解释事实,那就找来两个因子;如果两个仍然不够,就造出三个因子来。为了解释实验结果,有时得乞灵于这种超级戏法。要是我们过分轻信,就会受到蒙骗,觉得实验结果得到了圆满解释;殊不知人们想出这些解释,其目的只不过是为了解释实验结果。我们从事实倒退到‘因子’,然后叫一声‘变’,又由这臆造出来的因子来解释事实……”

  摩尔根决心沿着这条线索追下去,看看动物是怎样遗传的。他进一步观察,发现子三代的白眼蝇全是雄性。这说明性状(白)和性别(雄)的因子(后来叫基因)是“连锁”在一起的。而细胞分裂时,染色体先由一变二,可见能够遗传性状、性别的基因就在染色体上,通过细胞分裂一代代地传了下去,染色体就是基因的载体。摩尔根和他的学生真的还推算出了各种基因在染色体上的位置,并画出了一张果蝇的染色体位置图。

  孟德尔为了验证其假设的科学性,他进行了一系列的实验。他用子一代杂种Cc与亲代纯种cc杂交,产生的后代一半是Cc,呈红花;一半是cc,呈白花。结果与预期的设想完全符合。他又在子二代、子三代上进行实验,实验的结果又与预期的假设相符,从而验证了他的假设的正确性。这样,孟德尔建立了遗传学的第一规律,即“分离规律”:一对基因在异质结构状态下并不相互影响,相互沾染,而在配子形成时完全按照原样分离到不同的配子中去。在一般情况下,配子分离是1∶1,子二代基因型分离为1∶2∶1,表现型分离是3∶1。分离出来的隐性同质结合和原来的隐性亲本在表现型上完全一样,隐性基因并不因为曾与显性基因处于同一个体而发生沾染或影响,仍保持它的质。

在清晰的知道孟德尔式遗传定律的适用情况的今天,这段讲话中体现出的科学思维内涵,值得每一个真的愿意明了科学是怎么发展起来的人深思。

  摩尔根的染色体理论成功地解释了性别遗传。原来,性细胞,即精子和卵子,除可先一分为二,变成成倍的新细胞外,它还可以“减数分裂”。就是本来细胞中含有46个染色体,结果分裂后只剩23个。这样两个精子和卵子结合,又成为一个有46个染色体的新细胞了,这就是新的生命。男女双方的23个染色体有22个是普通染色体,只有一个是决定性别的。这一个在女性一方都是X染色体,在男性一方则有可能是X也可能是Y。精子与卵子结合时,如果双方都含X染色体,则生女孩,如果X卵子碰到一个Y精子则生男孩。这个谜到摩尔根这里才终于揭破了。于是他终于创立了著名的基因学说,并获得了1933年的诺贝尔生理学及医学奖金。

  孟德尔又通过杂交把几对相对性状结合在一个杂种体上,观察性状传递规律。他认为无论多么复杂的多对性状植株杂交,对于每一对相对性状来说,它们同样服从于分离规律。他用一个黄色子叶和饱满种子的亲本与另一个全是绿色子叶和皱皮种子亲本的豌豆进行杂交,得到的子一代全是黄而满的植株。子一代通过自花授粉,在556粒种中有“黄满”、“绿皱”、“黄皱”、

澳门威斯尼斯人网址 7

  各位读者,遗传学的规律自孟德尔到摩尔根,其间过了四十多年才逐渐摸清。先是由孟德尔提出一个遗传因子的假说,然后由后人一步步验证,再提出新的假说,再验证,科学就这样向前发展了。恩格斯有一段话专门谈这种研究方法。他说:“只要自然科学在思维着,它的发展形式就是假说。一个新的事实被观察到了,它使得过去用来说明和它同类的事实的方式不中用了。从这一瞬间,就需要新的说明方式了-它最初仅仅以有限数量的事实和观察为基础。进一步的观察材料会使这些假说纯化,取消一些,修正一些,直到最后纯粹地构成定律。如果要等待构成定律的材料纯化起来,那么就是在此以前要把运用思维的研究停下来,而定律也就永远不会出现。”

  “绿满”4种植株。因为同一对相对性状可以发生分离,如黄和绿这一对相对性状,黄对绿是显性。所以在556粒种子中,416粒是黄的,140粒是绿的,其比近似3∶1。同样,满和皱这一对相对性状来说,满对皱是显性,在556粒中,423粒是满的,113粒是皱的,其比也近似3∶1。因为不同性状可以相互组合,所以把不同性状综合起来可以表现为一种组合系列,组合的机会

孟德尔观察的七种碗豆性状:种皮形状、子叶颜色、花色、豆荚形状、豆荚颜色、开花位置、植株高矮。

  遗传是由基因决定的,那么基因又是由什么构成的呢?生物学还有待向更微观的领域开拓。孟德尔的假说被证实了,摩尔根接着又向后人提出一个假说,他在自己的名着《基因论》的末尾说道:“我仍然很难放弃这个可爱的假设:就是基因之所以稳定,是因为它代表着一个有机的化学实体。”

  n                     7是2。例如,上述几种相对性状组合的机会是2=128种组合类型。如对黄满

澳门威斯尼斯人网址 8

  这个假设是否能够成立,且听下回分解。

  2和绿皱两对性状来说,它们有2=4种不同的组合类型。所在占3/4的黄里面有3/4满,1/4皱,在1/4绿里面,有3/4满,1/4皱。同样,在3/4的满里面,有3/4黄,l/4绿;在1/4皱里面,有3/4黄,1/4绿。把两种性状综合起来,即:

从孟德尔的碗豆杂交实验可以得出以下结论:

  黄满=3/4×3/4=9/16

             1. 亲代父本与母本体内各有一成对因子(基因)可决定遗传特征。
             2. 此一成对因子在杂交的过程中会分开,重新进行组合。(第一定律)
             3. 不同遗传特征的基因独立而不互相干扰。(第二定律)

  黄皱=3/4×1/4=3/16

“用进废退”的果蝇

  绿满=1/4×3/4=3/16

在遗传学萌芽时期,多种生物“沦为”实验对象。但果蝇独具优势,首先果蝇繁殖迅速且后代数量惊人,一只雌果蝇只生存14天左右,但它能产上千枚卵。这意味着实验周期短,且众多后代特别适合遗传学家寻找一些奇特的突变。此外,果蝇很好伺候,只需一点香蕉即可满足它们的需求。这意味着,即便你没钱,也能当一个遗传学家。要知道那年头,可没有国家科研基金这样的馅饼。 毫无疑问,果蝇才是遗传学家的最佳搭档。

  绿皱=1/4×1/4=1/16

不过,在那个时代,人们往往顺手使用自己身边的材料,尚无研究需要特别的模式生物的想法,那还得等到摩尔根成功的建立经典遗传学说以后,其它研究者对此才会有深刻体会。所以,果蝇要想飞进摩尔根的视线,需要一些特别的原因才行,前面的“广告词”纯属事后诸葛般的解释。虽然,许多羡慕嫉妒恨的同行,无数次的想过,如果我早点使用果蝇作为实验材料........

  其比数是9∶3∶3∶1。事实上在杂交试验得到的556粒种子中:黄满315粒,黄皱101粒,绿黄108粒,绿皱32粒,它们的比数也近似于9∶3∶3∶1。

此时的摩尔根正迎来人生创造力的鼎盛时期或者特别中二的时期,也许是中年心理危机吧。此时的他不仅质疑孟德尔学说,对最新的染色体学说也持怀疑态度。他坚持认为秘密不在细胞核里面,而就在细胞质中,尤其在性别决定这个特定的问题上,更是如此。

  孟德尔由此推论得出遗传学的又一规律:“多对基因的独立分配或自由组合规律”。这个规律表明,当两对或更多对基因处于异质接合状态时,它们在配子中的分离是彼此独立不相牵连的。

在那个时期,他经常同时进行几十个实验,验证流行的假说以及自己的猜想,其中大多数实验都走入了死胡同。虽然摩尔根并不相信拉马克的获得性遗传学说,但他的用进废退学说似乎很有道理。当然实验才是一切,个人情感并不重要。1908年,摩尔根让他的研究生佩恩——曾研究过无眼盲鱼——用果蝇验证下用进废退学说。佩恩在窗台上放香蕉诱捕不幸的果蝇,并在长达两年的时间里,让它们玩“关上灯都一样”的游戏。按照用进废退学说,这似乎应该能培养出自爆双目的果蝇来。结果自然是让人失望,首先,两年的时间实在太短,不足以发生什么了不起的变化。其次,无眼盲鱼失去眼睛的真正原因也并非用进废退这么简单。 但这个失败的实验,让摩尔根体会到果蝇的优点。

  孟德尔用颗粒性遗传因子对生物遗传现象作解释。他认为,生物的每一个性状,都可以用遗传因子的基本单元来分析。从亲子到子代,是由颗粒性的遗传因子负责传递的。颗粒性遗传因子存在于细胞,是成双存在于体细胞里,而在性细胞里是成单存在的。杂交时,颗粒性因子保持独立性,它们之间不相融合,在杂种产生配子时,不同的遗传因子仍然保持相对的独立性,互不感染地各自分配在不同的配子里,完整地传给下一代。

1904年,发现月见草突变现象的德弗里斯提出生物突变应该可以通过人工方法诱发,比如新发现的伦琴射线(X射线)和居里射线(居里夫人发现的放射性镭)。摩尔根曾经拜访过德弗里斯,认为突变论比自然选择更适合用来解释生物进化。在验证用进废退失败后,他和佩恩一起再次使用果蝇,试图通过某种人工方法诱使其突变。他们用射线照射它,不让它睡觉整日整夜的摇动它,给它喝糖水、咸水、酸水或碱水,改变光照强度时间等等,一切能想到能做到的“蠢事”似乎都做了,然而果蝇们不为所动,伤透了摩尔根的心。当布林莫尔学院的老同事罗斯·哈里森来访时,他沮丧的心情也到达顶点。

  孟德尔还从大量的其他植物种类的试验中也得出了相同的结果。以后世界各国科学家重复孟德尔的试验及在各种植物和动物中试验,都证实了孟德尔遗传规律的普遍性。

事实上,摩尔根不是第一个使用果蝇来研究突变的人。最初是哈佛大学的卡斯尔提出使用果蝇来进行研究,他的学生伍德沃德使用它来作近交研究,他还将果蝇推荐给了卢茨。卢茨利用果蝇发现了一种突变,当摩尔根对人工诱变产生兴趣时,他推荐了他所研究的果蝇品系给摩尔根。于是摩尔根的实验室有了两种家系的果蝇,一者来自佩恩诱捕的野外果蝇,二者来自卢茨,这给后来的果蝇传奇带来了一点小波折。

  1865年2月2日和3月8日,孟德尔在布尔诺召开的自然科学研究会讨论会上两次发表了豌豆杂交试验的结果,并宣读了《植物杂交试验》论文。当时参加会议的有物理学家、天文学家、化学家及地质学家等40余人。他们敬佩孟德尔细心及持之以恒的观察、旁征博引的博学,但对于枯燥的数学演算感到惊奇及不耐烦,他们不理解为什么研究植物会与数学联系起来。因此整个会议气氛较为平淡。当时的会议记录在简要地记述孟德尔的报告时说:

果蝇的传奇白眼

  “没有提出问题,没有进行讨论。”次年,这份报告以一篇47页文章的形式,刊登在“自然研究会”的杂志上,这篇文章也未受到人们的重视。

澳门威斯尼斯人网址 9

  1868年,孟德尔当选为修道院的院长,他因此不得不把植物学的研究放在第二位。1883年起,他患了胃病和心脏病。1884年1月6日,孟德尔与世长辞。当数千人为他送葬的时候,大家为失去一位可亲的乐于助人的院长而悲伤,但谁也不知道他们送走的却是一位伟大的科学家。尽管当时还没有人承认他的研究成果,但是孟德尔坚信自己的研究是有价值的,他在逝世前几个月说:“我深信,全世界承认这项工作的成果已为期不远了。”

白眼的传奇

  孟德尔逝世后的16年,即1900年,荷兰的休戈·德弗里斯、德里的卡尔·埃里什·柯伦斯和奥地利的埃利什·封·邱歇马克3位植物学家根据他们各自独立的植物杂交试验相继发表论文,他们不约而同地指出:他们在试验之前完全不知道孟德尔的论文,只是在论文发表前夕查阅有关文献时才发现自己的论文竟与早已被人遗忘的孟德尔的中心思想不谋而合。

  就在摩尔根快绝望的时候,1910年5月,一只白眼果蝇出现在了摩尔根实验室的培养瓶中。而且摩尔根慧眼识英才,先后将两名本科生—斯图蒂文特和布里奇斯—招入他的实验室,以及威尔逊的一位研究生缪勒,他们四人默契的组合,成为科学史上的佳话。有了得力助手,以及即将奠定经典遗传学宏伟大厦基石的白眼果蝇,摩尔根至此已经注定要以遗传学家的身份名留后世,他坚持未放弃的胚胎学研究除了科学史上会有所介绍外,将再无人关注。

  1900年3月27日,德费里斯用德文发表了《杂种的分离律》,4月7日,他又用法文发表了《关于杂种的分离定律》。他在德文论文中写道:“这项重要的研究 (孟德尔《植物杂交试验》)竟极少被人引用,以致在我总结我们主要试验,并从试验中推导出孟德尔论文中已经给出的原理之前,竟然不知道有这项研究。”

但是,这只白眼果蝇的来源却颇为含糊。卢茨说,白眼果蝇最先出现在他的实验室,他把这个虚弱的突变体的后代送给了摩尔根,而摩尔根通过杂交实验,再次使这个性状出现,但摩尔根对此表示否认。他说虽然他在卢茨的实验室看到过几只白眼果蝇,但它们都已经死亡。他宁可认为这只白眼果蝇是天赐之物,它的祖宗更可能是从窗外飞进来的,而不是来自卢茨所赠送的果蝇。不过,纠缠在这种事情上没有实际意义。卢茨自己也说,当初他根本没有认识到白眼果蝇的重大价值,不然他也不会将它的后代慷慨相送。

  1900年4月24日,柯伦斯在《柏林德国植物学会》(第18卷)上发表的《关于种间杂种后代行为的格·孟德尔的定律》论文中这样写道:“还以为自己发现新东西。但是,随即便发现在上个世纪的60年代,布尔诺的格·孟德尔院长经过一系列深入的豌豆试验,不仅获得了与我完全一致的结论,而且提出了完全相同的解释。而这一切居然发生在几十年前的1866年。”

然而这只即将名垂青史的白眼果蝇身体却万般虚弱,或许摩尔根对此已经从卢茨的实验中有所了解。他将这只“白眼儿”单独放在一只培养瓶中随身携带,晚上睡觉前置于床头。当时正是摩尔根的第三个孩子问世之时,当他前往医院看望妻子时,摩尔根夫人的第一句话就是“白眼儿还好吗?”。十天以后,这只白眼果蝇在和一只正常的红眼雌蝇交配后死去,传下了1240个后代。这些后代,后来繁衍成一个大的家系,正是它们建立起了经典遗传学的宏伟大厦,将染色体、基因及生物基本遗传模式的混乱认识清扫一空。

  与此同时,邱歇马克也发表了《豌豆的人工杂交》论文。据他说,他和柯伦斯都是在1899年秋,读了福克的论文《植物杂交》(1881年)后才第一次知道孟德尔的论文。

分析子一代和十天后姊妹交所产生的子二代中的白眼性状进行统计分析,摩尔根发现白眼性状的遗传方式基本符合孟德尔遗传学说中的分离定律,未见融合遗传现象,即一只眼白一只眼红,或者半白半红。事实上子一代几乎都是红眼(但有三只白眼果蝇出现,这件事至今是个谜),子二代中约1/4的后代是白眼果蝇。这个实验事实,使得摩尔根重新回到了孟德尔遗传学说的框架中,至少在果蝇身上如此。不过白眼性状更独特的是,所有白眼果蝇都是雄性。为了解释这种奇怪的现象,摩尔根将果蝇进行杂交实验,得到了白眼雌性果蝇,它和正常雄性果蝇交配后,其子一代中约一半都是白眼而且全都是雄性!

  这3位植物学家的研究工作恰恰证实了孟德尔所发现的遗传规律的正确性,由此,孟德尔的经典性的工作才得到科学界的承认。这件事在科学史上被称为“孟德尔定律的重新发现”。1901年,孟德尔的《植物杂交试验》、

澳门威斯尼斯人网址 10

  《人工授粉得到的山柳菊属的杂种》两篇论文重新发表在邱歇马克主编的经典著作丛书中。《植物杂交试验》又被刊登在《植物区系》杂志上。

白眼的伴性遗传

  英国生物学家贝特森对重新发现孟德尔遗传规律作出了很大的贡献。他是一位热忱支持遗传学的科学家。他在1900年之前并不知道孟德尔的论文,当1900年重新发现之后,他第一个把孟德尔的论文译成英文,并在1900年皇家园艺学会的一次会议上,报告他做的一系列实验论证了孟德尔定律的正确性。他第一个把研究生物遗传的这门科学称“遗传学”。从此,遗传学成为生物科学中的一个重要的学科。1909年,贝特森出版了《孟德尔的遗传原理》,对传播孟德尔学说起了积极的作用。

  事情变得明显,白眼性状和决定性别的因子(很快被改名为基因)是关联在一起遗传的,这两种性状在遗传时不符合孟德尔的自由组合定律。很快,这个实验结果使得摩尔根和威尔逊认识到人类的色盲和血友病的遗传模式,和果蝇是一样的。这或许极大的鼓舞了摩尔根,因为这意味着人类的遗传模式很可能和果蝇有相似之处,甚至在大原则上是完全一样的也未为可知。

  孟德尔定律的重新发现,标志着遗传学进入了一个新时期。它结束了绵亘2000多年来人们关于生殖和遗传的种种纯粹的粗俗体验为基础的臆测和遐想,代之以慎密的科学实验方法和创新的科学思想,初步揭示了生物遗传和变异的机理。

尽管摩尔根已经知道,雌性果蝇拥有两条X染色体,雄性果蝇只有一条。但他还拿不定主意,将基因放在染色体上。他觉得将一种假说存在的基础置于另一个尚未得到肯定的假说之上是十分冒险的,而且作为一个博物学家,他清楚的知道某些鸟和飞蛾的遗传性状更常出现在雌性上,这似乎说明X染色体与性别决定之间的关系颇有神秘之处。这一点从其1910年5月投往《美国博物学家》的论文中也可看出,

  孟德尔定律是在当时的历史条件下产生的,限于当时的知识水平和研究水平还不能全部地概括和适用于整个生物遗传现象,他所提出的 “遗传因子”,后来被丹麦遗传学家约翰逊在1909年提出的“基因”一词所取代。但是早期的基因与“遗传因子”一词的概念一样是逻辑推理的产物,作为一种遗传性状的符号并没有具体的科学内涵。后来这个历史的任务落在了美国科学家托马斯·亨特·摩尔根的肩上。

“既然染色体的数目比较少,性状的数目却很多,那么,根据这个理论,许多性状就必然包含在同一染色体内,于是,很多性状应该组合在一起而表现为孟德尔式的遗传。事实与染色体假说的这一前提是符合的么?我认为不符合。”

  1866年9月25日,摩尔根出生在美国肯塔基州列克星敦一个英国贵族后裔的家庭里。他的父亲曾任美国驻外领事,他母亲也出身于名门望族。少年时代的摩尔根并没有什么过人的天才。但是,他从小就热爱大自然,对大自然的无穷奥秘充满了好奇心,什么事情都想亲自探究一番。

于是,摩尔根宁可设想一种非常复杂的解释,也没有采纳染色体来简单的解释这种伴性遗传的机制,虽然解释的细节在今日看来,不,就在摩尔根几年后看来就是完全错误的,但在实验时大胆,解释实验现象提出假说时慎重,一直是摩尔根的秉性。要把染色体和基因关联在一起,还需要更多的突变更多的实验。

  1886年摩尔根从肯塔基州立学院毕业,获得动物学学士学位。随后他考入约翰·霍普金斯大学研究生院作研究生,先后攻读普通生物学、解剖学、生理学、形态学和胚胎学。24岁时,他便完成了《论海洋蜘蛛》的博士论文,获得哲学博士学位。1891年,摩尔根接受布林马尔学院的聘请,到该院生物系任副教授,开始了他的科学研究生涯。1894年到1895年他又受聘到意大利那不勒斯著名的动物学站工作。在那里,他有机会结识了许多世界知名的科学家,听到了各种各样的生物学方面的观点。1904年,摩尔根接受哥伦比亚大学聘请,担任实验动物学教授。1927年摩尔根应邀到加利福尼亚理工学院筹建第一个生物系,1928年就任该系的第一任系主任。自此以后,他一直留在加州理学院,积极从事科学研究和科学组织工作,并在那里度过了他的晚年。

变变变更多的突变

  摩尔根开始致力于实验胚胎学的研究,接着又进行了生物组织再生的研究。后来,他利用实验和分析的手段,用果蝇作为实验材料,在遗传学研究领域中建立了卓越的功勋。

如果说这世上真有吉星高照这回事,那么在随后的几个月里,摩尔根所在的实验室就是好运发生器,原本罕见的突变现象开始频频发生,几乎每月都能发现一个新的突变,以至于后来同时代的遗传学家们感叹果蝇是摩尔根家的宠物。遗憾的是,由于他当时并未仔细统计突变的频率,今日我们只能猜测或许是最初摩尔根对果蝇的百般折磨——尤其是放射线照射——并付出千般辛苦后,回报终于到来。

  摩尔根在众多的研究遗传学的科学家中能够脱颖而出,除了摩尔根具有广博的知识,善于思考的头脑和勤奋的双手之外,还由于他正确地选择了果蝇作为实验材料。

随白眼突变后,摩尔根的实验室又得到了粉红眼色和硃砂眼色突变,其中硃砂眼色突变和白眼突变一样是伴性遗传,而粉红眼色和白眼这对性状则完全符合孟德尔自由分离定律。摩尔根开始相信染色体学说很可能是正确的,基因位于染色体上,至于孟德尔遗传学说,摩尔根则已无怀疑。下一步就是证明,性状的遗传是分组进行的,同组的也即位于同一条染色体上是连锁遗传,而不同组的性状之间则遵从自由组合定律。

  果蝇是一种在水果上取食的小昆虫,它受到遗传学家们的青睐,是与遗传学研究的特殊要求和目的分不开的。遗传学研究生物遗传和变异的原因,必须连续地观察和研究生物的许多个世代才行。这就要求被研究的生物繁殖速度快,产生的后代多。而果蝇正好具备了这个条件。1只果蝇1年可繁殖30代,每代可产生上千只小果蝇。另外,要弄清遗传和变异的原因,还必须研究染色体的变化情况。染色体是各种生物的细胞中携带遗传信息的物质。生物的各种特征,如身体的形状、大小、颜色等等,正是由各自的染色体决定的。各种生物有各独特的染色体,有的数目多,有的数目少,比如人有23对染色体。染色体太多,观察起来不方便。因此,科学家就寻找一些染色体简单的生物作实验材料。果蝇正好符合这个要求,因为它只有4对染色体,有几十种可供观察比较的性状。自摩尔根以果蝇为实验材料,并获得了遗传学研究方面的卓越成果之后,这种过去不引人注目的小动物,几年之内便步入了遗传研究的宝殿。英国、日本、前苏联、德国等世界各地的科学家纷纷向摩尔根索取果蝇,争着进行果蝇实验。

不过在提出这个关键假说的时候,摩尔根正面对一个难题,小翅突变。这也是一种伴性遗传突变,按连锁假说,小翅应该和白眼同属一组。也就是说,那些同时携带白眼和小翅的杂合体雌性果蝇的子代,应该同时出现或者不出现这两种突变性状,但是有很少的一些后代是白眼正常翅或者正常眼小翅。看起来发生了一定程度的自由组合,但和正常的自由组合相比,比例明显不对。1911年下半年,摩尔根受到1909年詹森提出的同源染色体的某些对应片断可能发生了交换的启发,提出了同在一条染色体上的基因,可以发生互换,并且他还认为基因是线性的排列在染色体上的,相距越远发生互换的可能性越高。这个假说发表在《科学》杂志上,接下来的任务就是验证它或者推翻它。而斯图蒂文特率先想到,可以利用交换发生的频率作染色体上的基因图谱,也即基因之间的相对位置关系,他利用已知的几个突变基因画了第一张果蝇的染色体基因连锁图谱。

  摩尔根从 1908年起开始养殖果蝇,并以果蝇作为实验材料进行遗传研究。从此,他和他的夫人丽莲,便终生与果蝇结下了不解之缘。1910年4月的一天,摩尔根在一个培养瓶里出乎意料地发现一只复眼完全白色的雄果蝇,它与复眼通常是红色的天然型果蝇明显不同。这个细小而明晰的变异引起了他的注意。摩尔根和他的同事们立即用那只白眼雄蝇和一只没有交配过的红眼雌蝇杂交。9天后,瓶中出现一大群果蝇,把他们放在放大镜下检查,发现所有后代 (F)共1237只都是红眼果蝇。在F这一代中进行自交 (兄

到1912年底,摩尔根和他的助手们,一共发现了40种果蝇突变。为了快速鉴定每种突变究竟属于哪一组,摩尔根将已研究清楚的白眼突变定为第一组,斑点突变为第二组,橄榄体色突变为第三组,因为这三个突变彼此之间是标准的自由组合关系。在实验室传代这三种突变果蝇,将新突变分别与它们杂交,所得子一代进行姊妹交回交等育种手段,然后仔细统计分析后代的性状,就可将其归组。当然,这件事从理论上说起来简单,做起来就需要培养数以百万计的果蝇,很快摩尔根就发现其实香蕉汁就可以满足果蝇的需要,勿需本不昂贵的香蕉。很多哥伦比亚大学的学生都参与进来,将果蝇带回家进行统计,以至于某个学生的孩子,自豪的给别人说,“我爸爸的工作是给哥伦比亚大学数苍蝇!”。

  妹交配)而产生了第二代F,这一代共有4000多只果蝇,进行检查结果发

澳门威斯尼斯人网址,到1914年的时候,他们将所有发现的突变都成功的归到了三组中,也即三个连锁遗传群,并且做了详细的连锁图,但麻烦的是果蝇有四对染色体。不过,摩尔根已经非常自信,他预言一定有第四个连锁群。果然,缪勒很快就发现了一种新的突变弯翅,并证实它和三个基本突变间彼此自由组合,到此四个连锁群都已找到。并且,连锁群性状的多少与染色体的大小也有关系,第四连锁群所在的染色体最小,发现的突变也少得多。

  2现,有2459只红眼雌蝇,1011只红眼雄蝇和782只白眼雄蝇。摩尔根注意到,在红眼与白眼的分配比率上基本符合孟德尔分配定律所表明的3∶1关系,红眼对白眼有显性地位。这说明红眼和白眼的事例是由孟德尔式的遗传因子决定的。

澳门威斯尼斯人网址 11

  摩尔根在上述实验中还发现了一种十分奇特的现象。他发现,在第二代F雄果蝇中白眼、红眼都有,但在雌果蝇中连一只白眼的都没有。实验观察

遗传连锁图上的基因排序

  2和统计是否会有差错呢?经过多次实验,结果依然相同。就这样,摩尔根发现了“伴性遗传”规律。按照这一规律,生物的某些特征或某些疾病,仅仅遗传给下一代的某一性别,就像我们现在知道的血友病仅仅遗传给男性一样。

  1915年,摩尔根和他的三位助手合著了《孟德尔遗传机制》一书。这本专著对果蝇研究作了全面总结,并且这是第一本尝试仅使用染色体,来解释遗传学问题的书。要知道当时,人们对染色体还所知不多。这本专著彻底奠定了摩尔根在遗传学研究上的地位,他也由此被誉为20世纪的孟德尔。其后,布里奇斯又发现了染色体不分离现象,因此子代果蝇中的染色体数将多于或少于普通果蝇,对这些果蝇进行的遗传学分析,进一步体现出染色体遗传学说的威力,这使得少数怀疑染色体遗传学说的学者也开始承认摩尔根是正确的。此后,摩尔根学派在此基础上,为解释各种果蝇中出现的遗传现象,推论出染色体上某些片断会出现缺失、重复和倒位等现象。

  有一次,摩尔根将一只白眼黄翅雌果蝇与一只红眼灰翅雄果蝇相配合,10天以后繁殖出上千只小果蝇,当他将这些小果蝇按性别、颜色分类时,发现小果蝇中,白眼果蝇的翅膀总是黄的,而没有一个是灰色的。而并没有出现孟德尔所假设的“自由组合”现象。摩尔根称这一现象为“性连锁”,就是说,生物的几种性状(在这里是白眼和黄翅性状)互相连锁在一起遗传到下一代。摩尔根的实验之所以会和孟德尔的豌豆实验不同,是由于豌豆的相对性状刚好在不同的染色体上,所以可以自由组合,各自表现独立的性状。但是,在大多数的情况下,同一条染色体有很多基因,这些在同一染色体上的基因不能独立活动,而是相互连锁在一起的。凡是相互连锁在一起的基因都一起遗传到下一代,这叫做一个“连锁群”,它们作为一个整体进行自由组合。实验结果表明,果蝇的基因可以归为4个连锁群,连锁群的数目刚好等于染色体的对数。如:玉米的几百个基因组成10个连锁群,它的染色体也刚好是10对。在这个事实的基础上,摩尔根得出了基因位于染色体上的结论,连锁遗传是由于连锁基因位于同一染色体上的结果。

1933年,在诺贝尔诞辰一百周年之际,摩尔根获得诺贝尔生理或医学奖。在此之前他已经两次被提名,但该奖项此前一直只发给医生或医学院教授。但是,摩尔根却委婉的拒绝出席诺贝尔诞辰那天在斯德哥尔摩举行的盛大宴会,说愿意在次年夏天去瑞典,理由是工作正忙无法分身,比如筹建生理学研究中心等事宜。不过,另一个理由可能更加真实,1933年初,海茨和鲍尔重新发现了果蝇唾液腺中所存在的巨型染色体。此前,摩尔根学派所做一切有关染色体的推论,现在将面临真正的考验,那些巨型染色体上经染色所呈现的无数条纹,将使得曾经的推理和假设,现在可以通过显微镜直接观察到更具体的现象。摩尔根的假说也因此面对严峻的考验,不知是我们的幸运还是摩尔根的幸运,研究最终证明染色体遗传学说是正确的,而连锁图也基本准确。

  摩尔根进一步研究认为,连锁程度或强度有赖于染色体上连锁基因间的距离。同一连锁群中的基因并非永远“抱紧”在一起,通常的连锁遗传只是部分的,连锁基因有时会分开。通过细胞学观察,发现在第一次减数分裂前期中,在同源染色体配对时期,两条染色体单位之间会发生交叉现象,这标志着两个相对连锁群的基因之间,随着染色体的交叉而发生基因有秩序的交换,使基因重新发生组合,从而增加了遗传的变异性。摩尔根和他的同伴们,通过大量的果蝇实验,最后终于证明:基因就像一串念珠似地一个接一个地排列在染色体上。他们还绘制出了代表各个性状的果蝇染色体的基因排列图。这是生物学研究史上,把基因定位在染色体上的首次成功的尝试。

澳门威斯尼斯人网址 12

  1926年,摩尔根总结了他在遗传研究中的主要发现,出版了一本很著名的书——《基因论》,从而最终完成了他的遗传基因学说。这一学说又称为摩尔根学说。他总结了遗传学的第三定律——连锁与交换定律,确认了基因是在染色体上作线性排列的,并且发现了伴性遗传以及染色体与性别的关系,从此建立了一个比较完整的遗传学理论体系——以染色体为核心的基因论。摩尔根由于这项重大的贡献而荣获1933年的诺贝尔生理学及医学奖。

果蝇唾液腺中的巨大染色体

  1934年春天,摩尔根带着夫人丽莲和女儿伊丽莎白到达瑞典的斯德哥尔摩领取诺贝尔奖金。在授奖仪式上,摩尔根对聚集在大厅里的优秀科学家、外交家和社会名流发表了题为《发生学同生理学和医学的关系》演讲。他在批判了过去有关人类遗传学中所沾染的迷信色彩之后说:现代遗传学“总有一天会有助于诊断疾病,虽然我们现在还没有找到连锁现象的确切例证,但是毫无疑问,将来时机一到,一定会发现千百种连锁现象,我们可以预期其中的一些现象,一定会把可见的和不可见的遗传特征联结起来。”

永恒的果蝇

  60多年后的今天,摩尔根的伟大预见已经成为现实。科学家们不仅发现了许多由于连锁现象引起的遗传疾病,而且确认了基因的客观存在,弄清了作为基因载体的染色体的成份、结构和功能,揭示了“遗传密码”,使遗传学发展到了分子水平,使人们可以根据生物高分子,如核酸、蛋白质的结构和功能的关系,解释极其复杂的生命现象了。随着科技的进步,过去对人类威胁最大的由外部因素引起的疾病,已经越来越多的得到了控制,有些疾病如天花、鼠疫、霍乱等烈性疾病基本上得以消灭或控制了。但是,由于遗传因素引起的疾病却越来越多地被揭露出来,这些疾病都和染色体或基因的某些变化有关。现在,摩尔根的基因理论,已经在直接为预防、诊断和治疗人类疾病服务了。

摩尔根的故事到此已经结束,但果蝇还在飞翔。至今,生物学上最深奥的胚胎发育进程以及神经系统的运作,我们都已从果蝇身上得到诸多启示。

1983年,Gehring实验室在研究果蝇胚胎发育时,意外发现了控制体节发育的同源异形基因,都拥有一高度相似的DNA片断,他们将之称为同源盒。随后的研究发现,这个DNA片断,在自然界各种生物—包括人—中广泛存在,序列高度保守,功能相似。这个发现,激起了许多惊奇,我们和果蝇的祖先彼此间在数亿年前就已经分道扬镳,但是在胚胎发育的基础结构上,我们和它们都仍然使用的是共同祖先传承的方案。

2005年7月,《细胞》刊登奥地利研究人员Demir 和Dickson的最新研究,他们通过改造果蝇的fruitless基因,使得雄性果蝇成了“同志”,而雌性果蝇则向同性施展出雄性果蝇才会的求爱方式。

同年7月,果蝇飞进了我国的实验室,中科院郭建增博士在《科学》上发表文章,在果蝇的学习和记忆能力的研究方面,得到重大发现。他发现,在一定的时空条件下,让果蝇同时使用其视觉和嗅觉,则出现学习与记忆的协同双赢和相互传递的现象。2006年2月,我国科学家与国外合作者,在《自然》发表论文,首次证明果蝇中心脑内的某扇形体结构,参与了视觉图形识别过程。

永恒飞翔的果蝇,究竟还有多少秘密,在等待着人类进一步的深入探索?

澳门威斯尼斯人网址 13

果蝇的一生

本文由澳门威斯尼斯人网址发布于澳门威斯尼斯人网址,转载请注明出处:澳门威斯尼斯人网址:世界科技(science and techno

关键词:

最火资讯