费马大定律,圆面积求法

来源:http://www.aviodelta.com 作者:澳门威斯尼斯人网址 人气:148 发布时间:2019-12-12
摘要:怎样求圆面积?这已是一个非常简单的问题,用公式一算,结论就出来了。可是你可知道这个公式是怎样得来的吗?在过去漫长的年代里,人们为了研究和解决这个问题,不知遇到了多

  怎样求圆面积?这已是一个非常简单的问题,用公式一算,结论就出来了。可是你可知道这个公式是怎样得来的吗?在过去漫长的年代里,人们为了研究和解决这个问题,不知遇到了多少困苦,花费了多少精力和时间。

            每一种新的进步,都必然表现为对某种神圣事物的亵渎。

  上回说到泰勒斯与一群人在金字塔下议论,到底世界是甚么。有的说是水,有的说是气。不料更有怪者,数年后他的一个学生却说世界是“数”。这个学生叫毕达哥拉斯(前572-492)。当他在希腊出生的时候,东方的释迦牟尼正在印度讲佛,中国的孔子正在春秋各国讲道。

选自《从一到无穷大》

在争论创新能力不足、创新意识不够的时候,往往我们忽视了更为重要的现实问题,那就是我们的学术积累和能力训练是否达到了突破现有人类认知边界的程度。网友曰,大多数人的勤奋程度其实远不到需要拼天赋的地步;那么,我作为一名科院博士生,或许应自问,是否自己学术能力的积累程度还远不到支持自己做出原创性工作的程度呢。上周末,花了一个通宵读完了西蒙·辛格的《费马大定理》这本书,感触颇深。

  在平面图形中,以长方形的面积最容易计算了。用大小一样的正方形砖铺垫长方形地面,如果横向用八块,纵向用六块,那一共就用了8×6=48块砖。所以求长方形面积的公式是:长×宽。

*                                                           ——马克思*

  毕达哥拉斯从小就极聪明,一次他背着柴禾从街上走过,一位长者见他那捆柴禾的捆法与别人不同,便说“这孩子有数学奇才,命该成为一个大学者。”他闻听此言,便摔掉柴捆南渡地中海到泰勒斯门下去求学。真是名师出高徒,毕达哥拉斯本就极聪慧,经泰勒斯一指点,当时许多数学难题在他的手下便迎刃而解。比如,他证明了三角形的内角和等于180度; 算出你要用瓷砖铺地,则只有用正三角、四角、六角三种正多角砖才能刚好将地铺满;证明了世界上只有五种正多面体,即:4、6、8、12、20面体。他还发现了奇数、偶数、三角数、四角数、完全数、友数、直到毕达哥拉斯数。但他最伟大的成就要算是发现了后来以他的名字命名的毕达哥拉斯定理(勾股弦定理)。即:以直角三角形两直角边为边长的正方形的面积之和等于以斜边为边长的正方形的面积:a2+b2=c2。据说,这是当时毕达哥拉斯在寺庙里见匠人用方砖铺地,常要计算面积,于是便发明了此法。

G.伽莫夫着 张卜天译

西蒙是剑桥粒子物理学博士,作为BBC纪录片导演,参与制作和导演了纪录片《地平线:费马大定理》,可以算的上是对费马大定理的证明过程了解颇深的人之一。且西蒙本人有很好的学术背景,对于研究内容有足够的理解能力,所以这本书写的既有学术深度又不乏可读性。他以生动的笔法大略勾勒了自古希腊时期至今与罗马大定理相关的数学研究进展和奇闻轶事,最后以一个科学的态度评述了最后的英雄。

  求平行四边形的面积,可以用割补的方法,把它变成一个与它面积相等的长方形。长方形的长和宽,就是平行四边形的底和高。所以求平行四边形面积的公式是:底×高。


  这定理是提出来了,用起来也确实方便,但是怎么从理论上加以证明呢?

图片 1

说到费马大定理,要回溯到中国商代、古巴比伦汉莫拉比时代或者古希腊毕达哥拉斯时代,因为费马大定理是由勾股定理或者说是毕达哥拉斯定理引起的。任何一个有中学文化水平的人都能够理解,在一个直角三角形中,直角边长a和b,斜边长c,则有a2 b2=c2这样的关系存在,这在公元前18-16世纪中国商代、古巴比伦和以及更早的古埃及的文明中都已经得到了认识和应用,之所以在学术语言系统里通常称其为毕达哥拉斯定理,是因为毕达哥拉斯被认为是第一个用数学的严密逻辑性证明了这一定理的人。到了三千年之后的文艺复兴时期,法国“业余数学家之王”皮耶·德·费马在研究毕达哥拉斯定理是否有无数的三元组(a、b、c)整数解满足等式时,提出了一个命题,如果这里的二次方改成三次方或者更高的幂次,则没有整数解,用数学语言表示的话就是:an bn=cn,当n>2时,不存在这样一组非零整数解(a、b、c)。这就是费马大定理。

  求三角形的面积,可以对接上一个和它全等的三角形,成为一个平行四边形。这样,三角形的面积,就等于和它同底同高的平行四边形面积的一半。因此,求三角形面积的公式是:


  正是:

第二章 自然数与人工数

费马有一个贱贱的毛病,他经常不屑于清楚地记录自己的证明,在自己的这个命题的研究笔记上他清楚的写到“我有一个对这个命题的十分美妙的证明,这里空白太小,写不下”,这就是让人恼火的费马。这个问题1670年被出版,为世界所知,为世界所惑。

  1

眼看就要进入冬季了,小贝的爸爸这阵子一直在忙着装修房子,这不,经过老爸叮叮当当的一顿折腾,现在只要在地面上铺好大理石地砖,整个装修就算完工了.*

  毕氏无心一道题,费尽后人多少力。

一、最纯粹的数学

形式上的极简和数学的严密逻辑性原则成就了费马大定理这一数学史上最引人注目的命题。后人在别的地方找到了费马记录的当n=4的情况下费马大定理的证明,后来欧拉给出了n=3情况下的证明,相继的更多n值下费马大定理成立的证明被发现。但是即是再多的n值被证明,也无法证明费马大定理本身,因为这是一个关于无限的问题,即使用上了现代最强大的计算机也没有办法解决无限的问题。

  ×底×高。


  自从这个定理问世以来,东西方不知有多少数学家来设法证明,真是百花齐放,各有所妙。这都是后话。我国在清朝初年有一位数学家叫梅文鼎(1633-1721),他发明的一种证法却极简便,只需用一张硬纸,剪上几刀,一并就知,列位如有兴趣不妨一试。

数学通常被人们尤其是数学家们誉为科学的女皇。既然是女皇,自然要力图避免与其他知识分支扯上关系。比如在一次“纯粹数学与应用数学联席会议”上,希尔伯特应邀作一次公开演讲,以帮助消除这两种数学家之间的敌意,他是这样说的:

三百多年来,无数天才数学家研究过这一问题,包括欧拉、高斯、拉梅、柯西、拉格朗日、勒让德、希尔伯特等等神级人物也相继折戟,无计可施。虽然未能解决,但数学知识和技术在积累和发展。虚数i作为-1的平方根被提出,逐步构建了模空间的数学系统,实则实现了四维空间的转换,现在我们知道低维空间是更高维空间的特殊形式,高维空间能够解析低维空间认知的更多细节;椭圆方程作为空间与代数连接的解析形式也得到了充分发展。

  2

装修房子可不是简单轻松的事,就连铺地面也要事先设计好的.爸爸买来几大包青黑色的正方形大理石地砖,小贝跑过去看,包装箱上写着地砖的规格是1米×1米.好大的地砖啊!小贝感叹着.爸爸却说,这是市场里最大的地砖了,而我们家则要铺设更大边长的正方形地砖,只能自己想办法了.说完看着小贝,等着小贝想出解决问题的办法.

  再说这毕达哥拉斯将那数学知识运用得纯熟之后,觉得这实在是一套了不得的本事,不能只满足于用数来算题解题,于是他要试着从数学扩大到哲学,用数的观点去解释一下世界。经过一番刻苦实践,他提出“凡物皆数”,数的元素就是万物的元素,世界是由数组成的,世界上的一切没有不可以用数来表示的,数本身就是世界的秩序。毕达哥拉斯还在自己的周围建立了一个青年兄弟会,入会者都要宣誓不把知识泄露给外人,这样他才肯向他们传授数学。可见当时才萌芽的数学是多么神秘。毕达哥拉斯死后大约50年间,他的门徒们把这种理论加以研究发展,形成了一个强大的毕达哥拉斯学派。

我们常常听说,纯粹数学与应用数学是彼此敌对的。事实并非如此。纯粹数学和应用数学并非彼此敌对。它们过去不曾敌对,将来也不会敌对。它们不可能彼此敌对,因为两者其实毫无共同之处。

二战之后,日本学术界基本凋零殆尽,在这样的情况下数学家却可以只凭一纸一笔和一个超强大脑来进行研究,而相比之下,其他学科则没有这个条件了。1954年东京大学年轻科学家志村五郎与长他一岁的同事谷山丰相识,两个人天才般的工作发现了模空间解序列和椭圆方程解序列之间可能存在着一一对应关系。这便是著名的谷山-志村猜想。这对于数学界意义非凡,因为数学一个个领域仿佛是一个个孤岛,互不通联,如果能够证明模空间与椭圆方程之间存在着一一对应关系,便能够大大扩展人类的认知空间,就像椭圆方程沟通了代数关系和几何关系从而大大提高了人类认识和理解空间规律的能力。从此又有了一大批数学家开始研究谷山-志村猜想的证明。故事到了1984年,数学家们来到德国举行讨论会,一个叫弗赖的数学家给出了人们新的希望,他使用反证法,首先假设费马大定理不成立,即存在一个整数解,那么通过变换,可以将上文讲过的费马方程变换成椭圆方程的形式;那么如果谷山-志村猜想是对的,即椭圆方程都能够被模形式化,并且这个转换后的椭圆方程能被证明不能模形式化,就可以证明这个椭圆方程不存在,从而证明费马方程不能有解。接下来的18个月里,无数的数学家投入到证明这个椭圆方程不能被模形式化的过程中,到了1986年夏天,加州伯克利的肯·里贝特给出了这一证明。

  任何一个多边形,因为可以分割成若干个三角形,所以它的面积,就等于这些三角形面积的和。

小贝围着包装箱转了一圈又一圈,终于想出办法了.她兴冲冲地叫来爸爸,说:“其实也不难,现在的地砖边长是1米,而我们需要的是更大边长的正方形地砖,只好自己创造了,在现有地砖基础上,沿着它的一条对角线切割开,一分为二,这样,用两块现有的地砖就可以拼出一个更大边长的正方形地砖了.”说着,小贝还画出了切割拼接图.

  这天,学派的成员们刚开完一个学术讨论会,正坐着游船出来领略一下山水风光,以驱散一天的疲劳。这地中海海滨,蓝色的海湾环抱着品都斯山;长长的希腊半岛伸进海面,就像明亮的镜子上镶着一粒珍珠。这天,风和日丽,海风轻轻吹来,荡起层层波浪,大家心里好不高兴。一个满脸胡子的学者看着广阔的海面兴奋地说:“毕达哥拉斯先生的理论一点不错,你们看这海浪一层一层,波峰波谷,就好像奇数、偶数相间一样,世界就是数字的秩序。”“是的,是的。”这时一个正在摇桨的大个子插进来说:“就说这小船和大海吧。用小船去量海水,肯定能得出一个精确的数字。一切事物之间都是可以用数字互相表示的。”

然而,尽管数学喜欢保持纯粹,并尽力远离其他科学,但其他科学尤其是物理学,却极力同数学“亲善”。事实上,纯粹数学的几乎每一个分支现在都被用来解释物理世界的某个特征。这包括抽象群理论、非交换代数、非欧几何等一直被认为最为纯粹、绝不可能付诸应用的学科。

那么,就只剩下一个问题,便是谷山-志村猜想的证明了,如果这一猜想能被证明,那么就能够自动证明费马大定理。

  2

图片 2

  “我看不一定。”这时船尾的一个学者突然发话了,他沉静地说:“要是量到最后,不是整数呢?”

但迄今为止,除了起智力训练的作用以外,还有一个巨大的数学分支成功地保持住了自己的无用性,它真可以被冠以“纯粹之王”的名号呢。这就是所谓的“数论”,它是纯粹数学思想最古老也最复杂的产物之一。

主角出场了,普林斯顿大学数学系安德鲁·怀尔斯教授似乎从小就有一个证明费马大定理的梦想,或许这是每个数学家年轻时的梦想,只不过怀尔斯做到了,宣传需要特意放大了。当谷山-志村猜想的证明和费马大定理的证明等同连接起来的时候,怀尔斯意识到自己不能够放过这个机会。

  4000多年前修建的埃及胡夫金字塔,底座是一个正方形,占地52900m。它的底座边长和角度计算十分准确,误差很小,可见当时测算大面积的技术水平已经很高。

看到爸爸不住地点头认可,小贝得意地哈哈笑:“看吧,天才就是有天才的想法!”

  “那就是个小数。”

说来也怪,从某种角度来讲,数论这种最纯粹的数学竟然又可以称为一门经验科学,甚至是一门实验科学。事实上,它的绝大多数命题都是通过尝试用数来做不同的事情而提出的,就像物理学定律是通过尝试用物体来做不同的事情而提出的一样。此外,数论的一些命题已经“在数学上”得到了证明,而另一些命题还停留在纯粹经验的阶段,至今仍在考验最出色数学家的能力,这一点也和物理学一样。

数学研究是特殊的,数学家之间往往不能进行交流,世界上一个领域能交流的人寥寥,而与专业人员交流又面临着泄漏新思路的危险,很可能你给别人来了一个一语点醒梦中人,所以数学家是孤独的。他决定开始进行秘密研究。除了必要的授课外,怀尔斯把大部分时间留在家里进行研究,他本身是研究椭圆方程的,这一领域他已烂熟,他又花了几年的时间学习了模空间、数论、群论等领域所有的研究成果和方法,在掌握了这些工具之后,他开始研究谷山-志村猜想的证明。

  圆是最重要的曲边形。古埃及人把它看成是神赐予人的神圣图形。怎样求圆的面积,是数学对人类智慧的一次考验。

不料爸爸又提了一个问题:“这个新的大正方形的边长是多少呢?”

  “要是这个小数既除不尽,又不能循环呢?”

让我们以质数问题为例来说明这一点。所谓质数,是指那些不能用两个或两个以上更小整数的乘积来表示的数,比如2,3,5,7,11,13,17等就是这样的数。而比如12可以写成2×2×3,所以就不是质数。

如果用中国人的话来讲,这叫闭关,就像张三丰锤炼太极拳,而怀尔斯的闭关长达七年之久。1993年,他完成了证明,1995年完成了证明缺陷的弥补。费马大定理被证明了,在费马贱贱的写下那句恼人的话三百多年之后。

  也许你会想,既然正方形的面积那么容易求,我们只要想办法做出一个正方形,使它的面积恰好等于圆面积就行了。是啊,这样的确很好,但是怎样才能做出这样的正方形呢?

听了这个问题,小贝刚才的得意劲转瞬消失,连忙说道:“啊哈,我只是路过的.”说完,一溜烟跑到卧室,独自钻研去了.

  “不可能,世界上的一切东西,都可以相互用数直接准确地表达。”

质数的数目是无限的呢,还是存在着一个最大的质数,凡是比这个数更大的数都可以表示成已有质数的乘积呢?这个问题最早是欧几里得解决的,他简单而优雅地证明了并不存在什么“最大的质数”,质数的数目超出了任何限度。

这是一部英雄史诗,是人类智慧挑战和突破极限的艰辛历程,同时也是一个科学家进行原创性研究的启示录。

  你知道古代三大几何难题吗?其中的一个,就是刚才讲到的化圆为方。这个起源于古希腊的几何作图题,在2000多年里,不知难倒了多少能人,直到19世纪,人们才证明了这个几何题,是根本不可能用古代人的尺规作图法作出来的。

已知正方形的边长,可以计算它的面积.然而,已知正方形的面积,能求它的边长吗?现在用两块地砖拼成一块大地砖,则大地砖的面积是2平方米,设大地砖的边长为x,那么x2=2,怎样求x?

  这时,那个学者以一种不想再争辩的口气冷静地说:“并不是世界上一切事物都可以用我们现在知道的数来互相表示。就以毕达哥拉斯先生研究最多的直角三角形来说吧,假如是等腰直角三角形,你就无法用一个直角边准确地量出斜边来。”

为了考察这个问题,让我们暂时假定只知道有限个质数,其中最大的用N表示。现在我们把所有已知的质数都乘起来,再加上1,把它写成以下形式:

扎实的学术基础是创新的前提,有了多年的学术修为,才有可能问道最艰深的难题,就像只有有了扎实的武功修为,才有可能到华山一较高下。七年里,怀尔斯为费马大定理的证明突破了多项领域的创新,其中每一项都是数学界的重要发展,而他最终的证明是这一项项的专门研究的自然延伸。即使费马大定理的证明失败了,就像无数前辈那样,他的工作依然是辉煌的。熟知三百年来折戟于此的无数先贤,怀尔斯依然把自己的学术生涯赌在这里,勇也!斯为英雄,然也!

  化圆为方这条路行不通,人们不得不开动脑筋,另找出路。

图片 3

  这个学者叫希帕索斯,他在毕达哥拉斯学派中是一个聪明、好学、很有独立思考能力的青年数学家。今天要不是因为争论,还不想发表自己这个新见解呢。那个摇桨的大个子一听这话就停下手来大叫着:“不可能,不可能,先生的理论置之四海皆准。”希帕索斯眨了眨一双聪明的大眼,伸出两手,用两个虎口比成一个等腰直角三角形说:

(1×2×3×5×7×11×13×……×N) 1。

  我国古代的数学家祖冲之,从圆内接正六边形入手,让边数成倍增加,用圆内接正多边形的面积去逼近圆面积。

    这个数横空出世,曾经惊呆了不少数学家,有人为此还付出了宝贵的生命,直接导致了第一次数学危机,整座数学大厦险些轰然倒塌!

  “如果直边是3,斜边是几?”

这个数当然比那个据称的“最大质数”N大得多。但它显然不能被我们的任何一个质数(到N为止,包括N在内)除尽,因为从这个数的构造方式可以看出,拿这些质数中的任何一个来除它,都会留下余数1。

  古希腊的数学家,从圆内接正多边形和外切正多边形同时入手,不断增加它们的边数,从里外两个方面去逼近圆面积。

    从数1、2、3……开始,人类学会了“抽象”,希腊人最先想搞明白“数”到底是什么,但却不断地遭遇到“逻辑困局”。经历了2000年,我们对“数”认识清楚了吗?从希帕索斯开始经历了2000多年到现在为了克服“第一次数学危机”,一代代数学家进行了艰苦卓绝的跋涉。

  “4”

因此,这个数要么本身也是一个质数,要么必定能被一个比N更大的质数整除。而这两种情况都与我们最初假设的N是最大的质数相矛盾。

  古印度的数学家,采用类似切西瓜的办法,把圆切成许多小瓣,再把这些小瓣对接成一个长方形,用长方形的面积去代替圆面积。

        希腊文明是人类文化史上最光辉的一页。大约在公元前1200年至公元前1000年间,希腊部落爱奥尼亚人迁徙到包括爱琴海东部诸岛屿在内的小亚细亚西部地方。由于海上交通的方便,使得它容易接受巴比伦、埃及等古代的先进文化,最终形成了后来影响欧洲乃至整个世界的灿烂文化。

  “再准确些?”

这种证明方式被称为归谬法,是数学家最爱用的工具之一。

  众多的古代数学家煞费苦心,巧妙构思,为求圆面积作出了十分宝贵的贡献。为后人解决这个问题开辟了道路。

        希腊文明最为突出的是其具有高度的理性化与抽象化,在希腊学术传统中,哲学、几何学、艺术和逻辑学的成就最高。

  “4.2”

一旦知道质数的数目是无限的,我们自然会问,是否有什么简单的办法可以把它们一个不漏地挨个写出来。古希腊哲学家和数学家埃拉托色尼(Eratosthenes)最早提出了这样一种方法,即所谓的“筛法”。你只需将完整的自然数列1,2,3,4…写下来,然后相继删去所有2的倍数、3的倍数、5的倍数,等等。图9显示了将埃拉托色尼的“筛法”用于前100个数的情况,其中总共有26个质数。通过使用这种简单的筛法,我们已经制作了10亿以内的质数表。

  16世纪的德国天文学家开普勒,是一个爱观察、肯动脑筋的人。他把丹麦天文学家第谷遗留下来的大量天文观测资料,认真地进行整理分析,提出了著名的“开普勒三定律”。开普勒第一次告诉人们,地球围绕太阳运行的轨道是一个椭圆,太阳位于其中的一个焦点上。

       毕达哥拉斯(约前560年-约前480年)学派是继以泰勒斯为代表的爱奥尼亚学派之后,希腊第二个重要学派,它延续了两个世纪,在希腊有很大的影响。它有着带有浓厚宗教色彩的严密组织,属于唯心主义学派。他们相信依靠数学可使灵魂升华,与上帝融为一体,从而数学是其教义的一部分。他们在数学上最大的贡献是证明了直角三角形三边关系的勾股定理,故西方称之为毕达哥拉斯定理。

  “再准确些?”

图片 4

  开普勒当过数学老师,他对求面积的问题非常感兴趣,曾进行过深入的研究。他想,古代数学家用分割的方法去求圆面积,所得到的结果都是近似值。为了提高近似程度,他们不断地增加分割的次数。但是,不管分割多少次,几千几万次,只要是有限次,所求出来的总是圆面积的近似值。要想求出圆面积的精确值,必须分割无穷多次,把圆分成无穷多等分才行。

        毕达哥拉斯学派的信条是,世界万物都是可以用数来表示的。他们所称的数就是自然数和分数。实际上分数也是自然数的结果。他们将这种数的理论应用于几何,认为,对于任何两条线段,总可找到一条同时量尽它们的单位线段,并称此两线段为可公度的。这种可公度性等价于“任何两条线段之比为有理数”。他们在几何推理中总是使用这条可公度性假定。

  “4.24”

图9

  开普勒也仿照切西瓜的方法,把圆分割成许多小扇形;不同的是,他一开始就把圆分成无穷多个小扇形。

       毕达哥拉斯的学生希帕索斯在研究勾股定理时,发现了一种新的数,而这种数是不符合他老师的宇宙理论的。希伯斯发现,如果直角三角形两条直角边都为1,那么,它的斜边的长度就不能归结为整数或整数之比(应该等于,是一个无理数)。更令毕达哥拉斯啼笑皆非的,是希伯斯居然用数学方法证实了这种新数存在的合理性,而证明的方法─归谬法,又是毕达哥拉斯学派常用的。

  “再准确些呢?”

倘若能设计出一个公式,可以迅速地自动找到所有质数而且仅仅是质数,那该多方便啊。可惜,经过数个世纪的努力,我们仍然没有找到这样的公式。1640年,着名的法国数学家费马(Pierre Fermat)认为自己已经设计出了一个只产生质数的公式:2 1,其中n取1,2,3,4等自然数的值。

  因为这些扇形太小了,小弧AB 也太短了,所以开普勒就把小弧AB和小弦AB 看成是相等的,即AB = AB。

       希伯斯,他试图找出根号2的等价分数,最终他认识到根本不存在这个分数,也就是说根号2是无理数,希帕索斯对这发现,喜出望外,但是他的老师毕氏却不悦。

  大个子脸涨得绯红,一时答不上来。希帕索斯说:“你就再往后数上十位、二十位也不能算是最精确。我演算了很多,任何等腰直角三角形的一边与斜边都不通约,都不能用一个精确的数字表示。”这话像一声晴天的霹雳,这是多么反常啊!全船立即响起一阵怒吼:“你敢违背毕达哥拉斯先生的遗言,敢破坏我们学派的信条!敢不相信数字就是世界!”希帕索斯这时倒十分冷静,他说:“我这是个新的发现,就是毕达哥拉斯先生在世也会奖赏我的。你们可以随便去验证。”可是人们不听他说,愤怒地喊着:“叛逆!叛逆!先生的不肖门徒。”

运用这个公式,我们得到:

  1

费马大定律,圆面积求法。        因为毕氏已经用有理数解释了天地万物,无理数的存在会引起对他信念的怀疑。希帕索斯经洞察力获致的成果一定经过了一段时间的论和深思熟虑,毕氏本应接受这新数源。然而,毕氏始终不愿承认自己的错误,却又无法经由逻辑推理推翻希帕索斯的论证。使他终身蒙羞的是,他竟然判决将希帕索斯淹死。这是希腊数学的最大悲剧,只有在他死后无理数才得以安全的被讨论着。后来,欧几里德以反证法证明根号2是无理数。

  “打死他!打死他!”大胡子冲上来,当胸给了他一拳。希帕索斯抗议着:“你们无视科学,你们竟这样无理!”“捍卫学派的信条永远有理。”这时大个子也冲过来,猛地将他抱起:“我们给你一个最高的奖赏吧!”说着就把希帕索斯抛进了海里。蓝色的海水很快淹没了他的躯体,吞没了他的声音。这时,天空飘过几朵白云,海面掠过几只水鸟,静静的远山绵延起伏,如一道屏风。一场风波过后,这地中海海滨又显得那样宁静。

图片 5

  小扇形AOB 的面积= 小三角形AOB 的面积=     R ×AB。

        可以想象,毕达哥拉斯学派受到了多么沉重的打击。小小的竟然动摇了他们惨淡经营的宇宙理论。怎么办?毕达哥拉斯的可悲,在于他不敢视这个新的数学问题,而是企图借助宗教信条来维护他的权威。他搬出学派的誓言,扬言要严惩敢于“泄密”的人。然而,真理从来就不是权劫的奴仆,真理的声音是谁也封锁不了的。渐渐地,有一种新的数存在的消息传扬了开去。

  科学史就这样揭开了序幕,但却是一幕悲剧。

这几个数的确都是质数。但在费马宣布这个公式之后大约一个世纪,德国数学家欧拉(LeonardEuler)证明,费马的第五个数并非质数,而是6 700 417与641的乘积。于是,费马这个演算质数的经验规则被证明是错误的。

费马大定律,圆面积求法。  2

       这一发现实际上是推翻了教派原来的论断,触犯了这个学派的信条。他们不许希帕索斯泄露存在根2(即无理数)的秘密,但是天真的希帕索斯在无意中向别人谈到了他的发现。后来毕达哥拉斯教派为了维护教派的信条,以破坏教规为理由将希帕索斯装进大口袋扔进了大海。希帕索斯因为发现了根号2“无理数”的存在,为揭示了一个科学的真理而付出了生命的代价。

  鲁迅先生说:悲剧就是将人生极有价值的东西,毁灭给人看。一个很有才华的数学家就这样被奴隶专制制度的学阀们毁灭了。但是这倒真使人们看清了希帕索斯的思想的价值。这次事件后,毕达哥拉斯学派的成员们确实发现不但等腰直角三角形的直角边无法去量斜边,圆的直径也无法去量尽圆周,那个数字是3.14159265358979...更是永远也无法精确的。慢慢地,他们后悔了,后悔杀死希帕索斯的无理行动。他们渐渐明白了,明白了直觉并不是绝对可靠的,有的东西必须靠证明;他们明白了,过去他们所认识的数字0、 自然数等有理数之外,还有一些无限的不能循环的小数,这确实是一种新发现的数——应该叫它“无理数”。这个名字反映了数学的本来面貌,但也真实记录了毕达哥拉斯学派中的学阀的蛮横无理。

还有一个引人注目的公式也可以产生许多质数。这个公式是:

  圆面积等于无穷多个小扇形面积的和,所以

         同时该教派犯下了将发现无理数存在的教派成员、毕达哥拉斯的学生希帕索斯迫害致死的罪行。这是数学史上一个最著名的悲剧。他那传奇般的一生给后代留下了许多的故事与传说。

  正是:

n2-n 41,

  1     1      1

       然而像根号2这样的“无理数”存在的事实,却不可能一扔了之,由此引发了数学史上第一次危机,也带来了数学思想一次大的飞跃。认识无理数的存在告诉我们,矛盾的存在说明人的认识还具有某种局限性,需要有新的思想和理论来解释。我们只有突破固有思维模式的束缚,才能开辟新的领域和方向,科学才能够继续发展。

  科学史才揭序幕,科学家便有牺牲。

其中n也取1,2,3等自然数的值。人们已经发现,在n取1到40之间某个数的情况下,用上述公式都能产生质数。可惜到了第41步,这个公式也不管用了。

  圆面积S =  R ×AB         2     2     2

       科学无止境,认识无禁区,那些事先为科学设定条条框框的,最后将变成阻碍科学进步的阻力,必然被时代的所抛弃。

事实上,

  1

        回避数学实证总算在当时勉强解决了“第一次数学危机”。但疑问的种子已经深埋到了人们的心理,纸里包不住火,希腊人很快将这个发现传播了出去……

41)2-41 41=412=41×41,

  2

       在“√2质疑”面前希腊人变成了鸵鸟(这倒是很像现今的“网络达人”和“青年导师”面对质疑是贯常采用的方式)。将几何量“形”与“数”割裂开来, 使应用之“数”和几何之“量”完全成为两个不相关概念,希腊数学因此成为“几何即数学”的偏瘫病人。文艺复兴后费马、笛卡尔发明解析几何才终于有了突破, “数形结合”才能成为现代“数学理解”的基本方法。

这是一个平方数,而不是质数。

  在最后一个式子中,各段小弧相加就是圆的周长2πR,所以有

      无理数的出现推翻了古希腊数学体系中的一个最基本的假设,直接导致了第一次数学危机,整座数学大厦险些轰然倒塌。

人们还尝试过另一个公式:

  1

        无理数虽说无理,在生产生活中的用途却是相当广泛。例如,量一量你手边的书本杂志的长与宽,你会发现它们的比值就约为 1.414 。这是因为通常印刷用的纸张都满足这么一个性质:把两条宽边对折到一起,得到一个新的长方形,则新长方形的长宽之比和原来一样。因此,如果原来的长宽比为 x : 1 ,新的长宽比就是 1 : x/2 。解方程 x : 1 = 1 : x/2 就能得到 x = √2。

n2-79n 1601,

  S =  R ×2                2

怎样证明√2是无理数?一般用反证法。

在n取从1到79之间的某个数时,这个公式都能产生质数,然而当n=80时,它又失效了!

  这就是我们所熟悉的圆面积公式。

经典证明如下:

于是,寻找只产生质数的普遍公式的问题仍然没有得到解决。

  开普勒运用无穷分割法,求出了许多图形的面积。1615年,他将自己创造的这种求圆面积的新方法,发表在《葡萄酒桶的立体几何》一书中。

假设(√2)不是无理数,那么(√2)可以写成最简分数p/q. 其中,p和q 都是整数,而且互质。

尚未得到证明也没有被否证的数论定理的另一个有趣例子是1742年提出的所谓“哥德巴赫猜想”。它说:每一个偶数都能表示成两个质数之和。从一些简单的例子很容易看出它是对的,比如12=7 5,24=17 7,32=29 3。但数学家们虽然就此作了大量研究,却依然不能确凿地证明这个命题是对的,也找不出一个反例来否证它。直到1931年,苏联数学家施尼雷尔曼(Schnirelmann)才朝着所期望的证明成功地迈出了建设性的第一步。他证明,每一个偶数都是不多于300 000个质数之和。后来,“300000个质数之和”与“2个质数之和”之间的差距被另一位苏联数学家维诺格拉多夫(Vinogradoff)大大缩短了。他把史尼雷尔曼的结论减少到“4个质数之和”。但是从维诺格拉多夫的“4个质数”到哥德巴赫的“2个质数”,这最后的两步似乎最难迈过去。我们不知道究竟需要几年还是几个世纪,才能最终证明或否证这个困难的命题。

  开普勒大胆地把圆分割成无穷多个小扇形,并果敢地断言:无穷小的扇形面积,和它对应的无穷小的三角形面积相等。他在前人求圆面积的基础上,向前迈出了重要的一步。

∵(√2)2= 2

由此可见,要想导出能够自动给出小于任意大的数的所有质数的公式,我们还有很远的路要走,我们甚至不确定究竟能否导出这样的公式呢。

  《葡萄酒桶的立体几何》一书,很快在欧洲流传开了。数学家们高度评价开普勒的工作,称赞这本书是人们创造求圆面积和体积新方法的灵感源泉。

∴ (p/q)2= p*p / q*q = 2

现在,我们也许可以问一个更为谦卑的问题:在给定的数值区间内,质数所占的百分比有多少。随着数变得越来越大,这个百分比是否大致保持恒定?如果不是,它是增大还是减小?我们可以通过查找不同数值区间内的质数数目来经验地回答这个问题。我们发现,100以内有26个质数,1 000以内有168个,1 000 000以内有78 498个,1 000 000 000以内有50 847 478个。把这些质数数目除以相应的数值区间,我们便得到了下面这张表:

  一种新的理论,在开始的时候很难十全十美。开普勒创造的求圆面积的新方法,引起了一些人的怀疑。他们问道:开普勒分割出来的无穷多个小扇形,它的面积究竟等于不等于零?如果等于零,半径OA和半径OB就必然重合,小扇形OAB就不存在了;如果客观存在的面积不等于零,小扇形OAB与小三角形OAB的面积就不会相等。开普勒把两者看作相等就不对了。

∴ 2*q*q =p*p

从这张表上首先可以看出,随着数值区间的扩大,质数的相对数目在逐渐减少,但并不存在质数的终点。

  面对别人提出的问题,开普勒自己也解释不清。

又∵P是整数,∴p 是偶数,可以写成2m 的形式。

有没有什么简单的办法能对质数在大数当中所占百分比的这种减小做出数学表示呢?有的,而且支配质数平均分布的法则堪称整个数学中最引人注目的发现之一。这条法则说:从1到任何更大的数N之间质数所占的百分比近似由N的自然对数的倒数所表示。1]N越大,这种近似就越精确。

  卡瓦利里是意大利物理学家伽利略的学生,他研究了开普勒求圆面积方法存在的问题。

∴ 2 *q*q =(2m)*(2m)= 4 m*m

从上表的第四栏可以查到N的自然对数的倒数。将它们与前一栏的值对比一下,就会看到两者非常接近,而且N越大就越接近。

  卡瓦利里想,开普勒把圆分成无穷多个小扇形,这每个小扇形的面积到底等不等于圆面积,就不好确定了。但是,只要小扇形还是图形,它是可以再分的呀。开普勒为什么不再继续分下去了呢?要是真的再细分下去,那分到什么程度为止呢?这些问题,使卡瓦利里陷入了沉思之中。

∴ q*q = 2* m*m

和其他许多数论命题一样,上述质数定理起初也是凭经验发现的,而且长时间得不到严格的数学证明。直到19世纪末,法国数学家阿达马(Jacques Solomon Hadamard)和比利时数学家普桑(de la Vallée Poussin)才终于证明了它。其证明方法太过繁难,这里就不去解释了。

  有一天,当卡瓦利里的目光落在自己的衣服上时,他忽然灵机一动:唉,布不是可以看成为面积嘛!布是由棉线织成的,要是把布拆开的话,拆到棉线就为止了。我们要是把面积像布一样拆开,拆到哪儿为止呢?应该拆到直线为止。几何学规定直线没有宽度,把面积分到直线就应该不能再分了。于是,他把不能再细分的东西叫做“不可分量”。棉线是布的不可分量,直线是平面面积的不可分量。

∴q 也是偶数。

既然讨论整数,就不能不提到着名的费马大定理,尽管这个定理与质数的性质并无必然联系。这个问题可以追溯到古埃及,那里的每一个好木匠都知道,一个三边之比为3:4:5的三角形必定包含一个直角。事实上,古埃及人正是把这样一个三角形(现在被称为埃及三角形)用作木匠的曲尺。

  卡瓦利里还进一步研究了体积的分割问题。他想,可以把长方体看成为一本书,组成书的每一页纸,应该是书的不可分量。这样,平面就应该是长方体体积的不可分量。几何学规定平面是没有薄厚的,这样也是有道理的。

p,q,都是偶数,这个和最初的假设p,q互质,是矛盾的。

公元3世纪时,亚历山大里亚的丢番图(Diophantes)开始思考这样一个问题:是否只有3和4这两个整数才满足其平方和等于另一个整数的平方?他证明,还有其他三个一组的整数具有这样的性质,并且给出了找到这些整数的一般规则。这些三边均为整数的直角三角形被称为毕达哥拉斯三角形,埃及三角形是其中第一个。构造毕达哥拉斯三角形的问题可以简单地表述成解代数方程

  卡瓦利里紧紧抓住自己的想法,反复琢磨,提出了求圆面积和体积的新方法。

∴ √2 是无理数。

x2 y2= z2,

  1635年,当《葡萄酒桶的立体几何》一书问世20周年的时候,意大利出版了卡瓦利里的《不可分量几何学》。在这本书中,卡瓦利里把点、线、面,分别看成是直线、平面、立体的不可分量;把直线看成是点的总和,把平面看成是直线的总和,把立体看成是平面的总和。

其中x,y,z须为整数。2]

  卡瓦利里还根据不可分量的方法指出,两本书的外形虽然不一样,但是,只要页数相同,薄厚相同,而且每一页的面积也相等,那么,这两本书的体积就应该相等。他认为这个道理,适用于所有的立体,并且用这个道理求出了很多立体的体积。这就是有名的“卡瓦利里原理。”

1621年,费马在巴黎买了一本丢番图所着《算术》的法文译本,其中讨论了毕达哥拉斯三角形。费马读这本书时,在书页空白处作了一则简短的笔记,说虽然方程

  事实上,最先提出这个原理的,是我国数学家祖 。比卡瓦利里早1000多年,所以我们叫它“祖 原理”或者“祖 定理”。

x2 y2= z2

  阿贝尔与n次方程的代数解

有无穷多组整数解,但对于任何

  同学们学过一元一次方程

xn yn= zn

  ax=b(a≠0)

类型的方程,当n大于2时永远没有整数解。

  b

“我发现了一个绝妙的证明,”费马补充说,“但这里的空白太窄了,写不下。”

  它的代数解是:x =    (a≠0)

费马去世后,人们在他的图书室发现了丢番图的那本书,那则旁注的内容也公诸于世。三百多年来,各国最优秀的数学家都在力图重建费马写那则旁注时所想到的证明,但至今未能成功。3]当然,在朝着终极目标迈进方面已经有了很大进展。一门全新的数学分支,即所谓的“理想数理论”,在尝试证明费马大定理的过程中被创建出来。欧拉证明,方程x3 y3= z3和x4 y4=z4不可能有整数解。狄利克雷(Dirichlet)证明,x5 y5=z5也是如此。通过几位数学家的共同努力,现已证明,当n的值小于269时,费马方程都不可能有整数解。不过,对指数n取任何值都成立的一般证明一直没能作出。人们越来越怀疑,费马要么根本没有作出证明,要么就是在证明过程中有什么地方弄错了。为了寻求这个问题的解答,曾经悬赏10万德国马克,这个问题因此变得红极一时。不过,那些为奖金而来的业余数学家的努力全都以失败而告终。

  a

当然,这个定理也有可能是错误的,只要能找到一个例子,证明两个整数的某个相同高次幂之和等于另一个整数的同一次幂就可以了。不过在寻找这个例子时,我们只能使用比269更大的幂次,这可不是容易的事情啊。

  2

1]简单地说,一个数的自然对数可以定义为它的普通对数乘以2.3026。

  又学了一元二次方程ax bx c=0(a≠0)

2]丢番图的一般规则是:取任意两个数a和b,使2ab是一个完全平方数。令x=a ,y=b ,z=a b 。于是用代数方法很容易证明,x2 y2= z2。用这个规则可以列出所有可能的解。最前面几个解是:

  它的代数解(用方程的系数经过若干次代数运算而得到表示根的式子,叫做方程的代数解)是:

32 42=52,

  x                     2ab

52 122=132,

  这个求根公式看来很简单,也很容易学,但同学们可知道它的发现过程却经历了漫长的历史吗?

62 82=102,

  公元前2000年左右巴比伦人的泥板文书中说,求出一个数,使它与它的倒数的和等于一个已知数,即求出这样的一对数x和x,使

72 242=252,

  xx = 1且xx = b,由此得出关于x的方程是

82 152=172,

  2

92 122=152,

  x-bx 1=0

92 402=412,

  b2        b 2

102 242=262。

  他们作出( ),再作出 (     )          2         2

3]费马大定理于1995年被英国数学家安德鲁·怀尔斯(Andrew Wiles)所证明。——译者。

  b   b2

  x =      2   2

  b   b

  x                  2   2

  这实际上是古巴比伦人得到的求根公式。但是当时不承认负数的存在,所以他们回避了负根。

  希腊的丢番图(约前246~330)则只承认一个正根,即使两个都是正根,也只取一个。

  印度的波罗及摩及(约公元598~665)在公元628年写成的《波罗摩修正体系》中,得到方程

  2

  x Px-q=0

  的一个根的求根公式是

  2

  P                x                     2

  到了9世纪乌兹别克数学家花刺子模(约公元780~850)在他的《代数学》中第一次给出了一般的一元二次方程的解法,他承认有两个根,还允许无理根的存在,但他不认识虚数,所以不承认虚根。

  法国数学家韦达 (1540~1603)则知道一元二次方程在复数范围内恒有解。

  我国数学家对一元二次方程的研究有特殊的贡献。秦汉时代的《九章算

  2术》就有求方程x 34x-7100=0的正根记载。

  2

  在3世纪,赵爽(约公元222年)注释《周髀算经》时,提出了x-bx c=0型的求根公式。也是世界上最早记录了二次方程的求根公式。

  一般的三次方程的代数解的表达形式经历了800年之久,到了16世纪初,欧洲文艺复兴时代,才由意大利数学家给出。下面的三次方程的代数解公式,一般称为卡丹 (1501~1576)公式:

  3                    2

  方程x px q=0的三个根是y z,wy wz,wy wz,

  1 1   1 21    1 1

  3  q   q2  p3    q  q2  p3     q      (其中y          2   4  27    2   4  27     3     2

  w2      2

  其实,发现这个公式的并不是卡丹。原来这里还有一段诱人深思的故事呢!

  3

  在意大利的波伦亚城有一位数学教授费洛,他首先发现了方程 x mx=n

  (m,n为正数)的解法,并于1505年把此方法传授给他的学生弗罗里都斯。

  到了1525年,在意大利的威尼斯城举行了一次数学竞赛会,弗罗里都斯的对手塔尔塔里亚已经估计到对方会提出求解三次方程的问题,所以他就全力以赴的研究这个问题,他在比赛前的8天里以惊人的速度解决了800多年来没有解决的问题。在比赛过程,塔氏在两小时内解答了弗氏提出的30个问题,而最终取得了比赛的胜利,而弗氏却以回答不出塔氏的问题而宣告失败。

  在这之后,塔氏更是专心致志的研究三次方程的问题,到1541年,他便找到了一般三次方程的代数解。这时卡丹请求塔氏告诉他这个公式,并保证不泄露秘密,于是塔氏便满足了卡丹的要求。但卡丹并没有遵守诺言,在1545年,卡丹在他的《大法》一书中公布了这个解法,所以就一直被误认为是卡丹公式,如果这个故事是真的,卡丹的为人品德也真是令人讨厌!

  就在《大法》这本书里,卡丹还公布了他的学生费拉里发现的一般四次方程的代数解。

  从二次方程到四次方程,人们通过变换,配方和因式分解等手段解决了一般的二、三、四次方程的代数解问题。例如:

  b

  aX2  bX c = 0,将X = Y -  代入可求出代数解;

  2a

  b

  aX3  bX2 cX d = 0,将X = Y -   代入可求出代数解;

  3a

  b

  4   3   2

  aX  bX  cX c dX e = 0,将X = Y -  代入可求出代数解。

  4a

  于是人们类比联想:一般的n(n≥5)次方程可能求出它的代数解。

  从16世纪中叶到19世纪末,当时几乎所有的数学家都坚持不懈地研究这个问题,人们发挥了一切聪明才智,但都没有找到解决问题的办法。

  于是人们考虑重新认识这个问题,并且从反面提出问题:“一般n(n≥5)次方程可能没有代数解”,而且持有这种怀疑的人越来越多。

  拉格朗日(1736~1813)在回忆录中写道:“用根号解四次以上的方程的问题是一个不可能解决的问题,虽然,关于解法的不可能性,什么也没有证明。”高斯(1777~1855)在1801年的《专题论文》中也说过,这个问题也许是不能解决的问题。

  拉格朗日有一个学生叫鲁菲尼在1799~1813年之间,曾经多次企图证明n(n≥5)次方程没有代数解,但都没有成功,直到1824年,22岁的挪威数学家阿贝尔(1802~1829)证明了这个猜想:“n(n≥5)次方程没有代数解”。

  值得指出的是,阿贝尔虽然只活了26年零8个月,但在数学上的贡献是巨大的,正如一位数学家所说:“阿贝尔留下了一些思想,可供数学家们工作150年。”他在1823年发表第一篇论文,最先提出对一种积分方程的解法。1824年发表了上述定理的证明,寄给高斯,没有受到重视(当时他的定理的叙述是:高于四次带有任意文字系数的方程不可能用代数一般的解法),1825~1826年,阿贝尔去柏林,在那里结识了工程师、数学家A·L·克列尔,成为他的知交和良师,并在克列尔创办的《纯粹数学与应用数学》杂志第一卷(1826年)上发表阿贝尔关于五次方程研究的详尽内容,当然还有其他方面的论文。

  为什么人们经过这么长时间的努力,才证明了“n(n≥5)次的方程没有代数解呢”?是否同不能正确地提出问题和认识问题有关呢?如果能较早地从反面提出问题,也许这个问题的解决会缩短一些时间呢!这个问题是否也给我们这样一个启示:当从正面考虑问题不得其解时,可从反面去思考和研究,这正是“正难则反”的思维策略!

  令人着迷的四色问题

  同学们,让我们来做这样一个试验:给地图着色。在我国的地图上,给每个省、直辖市涂上一种颜色,要求相邻的省或直辖市有不同的颜色,最少需要几种颜色就足够了?答案是四种!再让我们来看看在世界地图上,用不同的颜色区分开相邻的国家,最少用几种颜色就足够了?答案还是四种。

  我们上边做的给地图着色的实验,100多年前就已经有人做过了。大约在1850年,英国伦敦大学的学生居特里偶然发现:要区分英国地图上的州,有四种颜色就够了。他把这个发现告诉了弟弟,哥儿俩又进行了大量这方面的实验,发现有些地图用3种颜色,有些地图用4种颜色,但最多用4种颜色足以把共同边界的两个国家 (或地区)区分开,即把相邻的国家涂上不同的颜色。居特里相信这个发现是正确的,但他证明不了。于是去请教他的老师,他的老师也不能证明这个问题。后来在1878年,当时英国的数学权威凯利在伦敦数学会上正式提出了这个问题。这个问题被称为四色问题。

  四色问题提出以后,吸引了许多人。不断有人声称自己已经解决了四色问题,但都被人找出了证明过程中的错误。四色问题的影响越来越大,更多的人热衷于这个问题,这期间有人证明了“五色定理”,即给地图着色,用5种颜色就可以把相邻的国家 (或地区)区分开,但四色问题仍没有人能够解决。

  著名的大数学家闵柯夫斯基在四色问题上还闹出过一个笑话呢。一次闵柯夫斯基的学生跟闵柯夫斯基提及四色问题,一向谦谨的闵柯夫斯基却口出狂言:四色问题没有解决,主要是没有第一流的数学家研究它。说着便在黑板上写了起来。他竟想在课堂上证明四色问题。下课铃响了,尽管黑板上写的密密麻麻,但还是没能解决问题。第二天上课的时候,正赶上狂风大作,雷电交加,闵柯夫斯基诙谐地说:老天也在惩罚我的狂妄自大,四色问题我解决不了。

  从这以后,四色问题更出名了,成了数学上最著名的难题之一。由于问题本身的简单、易懂,使几乎每个知道这个问题的人都想解决它。并且一旦接触这个问题,就有点欲罢不能的感觉 (当时有人称之为“四色病”),很多人为这个问题的解决献出了毕生的精力,这其中既有数学方面的专家,也有普通的数学爱好者。我们国内也有许多人为解决这个问题努力过,中国科学院数学研究所接到的声称自己已经解决了四色问题的文章,放在一起足有好几麻袋,可惜他们的证明都有错误。

  到了本世纪70年代,四色问题的研究出现了转机。美国伊利诺斯大学的阿佩尔、哈肯等人在研究了前人各种证明方法和思想的基础后,认为现在数学家手里掌握的技巧,还不足以产生一个非计算机的证明。从1972年起,他们在前人研究的基础上,开始了计算机证明的研究工作。终于在1976年彻底解决了四色问题,整个证明过程在计算机上花费了1200个小时。

  四色问题虽然解决了,但数学家心中多少还留有一点遗憾。用电子计算机解决四色问题,没有创造出数学家们所期望的新方法和思想。数学家还在期待着不借助任何工具,只依靠人本身智慧的“手工证明”。青少年朋友们,你们对四色问题的手工证明有兴趣吗?如果谁有兴趣,可要千万记住,先得好好学习,掌握足够的相关知识。用锤子和斧头这样的简单工具是造不出航天飞机的!

  发现无理数

  毕达哥拉斯大约生于公元前580年至公元前500年,从小就很聪明,一次他背着柴禾从街上走过,一位长者见他捆柴的方法与别人不同,便说:“这孩子有数学奇才,将来会成为一个大学者。”他闻听此言,便摔掉柴禾南渡地中海到泰勒斯门下去求学。毕达哥拉斯本来就极聪明,经泰勒一指点,许多数学难题在他的手下便迎刃而解。其中,他证明了三角形的内角和等于180度;能算出你若要用瓷砖铺地,则只有用正三角、正四角、正六角三种正多角砖才能刚好将地铺满,还证明了世界上只有五种正多面体,即:正4、6、8、12、20面体。他还发现了奇数、偶数、三角数、四角数、完全数、友数,直到毕达哥拉斯数。然而他最伟大的成就是发现了后来以他的名字命名的毕达哥拉斯定理 (勾股弦定理),即:直角三角形两直角边为边长的正方形的面积之和等于以斜边为边长的正方形的面积。据说,这是当时毕达哥拉斯在寺庙里见工匠们用方砖铺地,经常要计算面积,于是便发明了此法。

  毕达哥拉斯将数学知识运用得纯熟之后,觉得不能只满足于用来算题解题,于是他试着从数学领域扩大到哲学,用数的观点去解释一下世界。经过一番刻苦实践,他提出“凡物皆数”的观点,数的元素就是万物的元素,世界是由数组成的,世界上的一切没有不可以用数来表示的,数本身就是世界的秩序。毕达哥拉斯还在自己的周围建立了一个青年兄弟会。在他死后大约500年间,他的门徒们把这种理论加以研究发展,形成了一个强大的毕达哥拉斯学派。

  一天,学派的成员们刚开完一个学术讨论会,正坐着游船出来领略山水风光,以驱散一天的疲劳。这天,风和日丽,海风轻轻的吹,荡起层层波浪,大家心里很高兴。一个满脸胡子的学者看着辽阔的海面兴奋地说:“毕达哥拉斯先生的理论一点都不错。你们看这海浪一层一层,波峰浪谷,就好像奇数、偶数相间一样。世界就是数字的秩序。”“是的,是的。”这时一个正在摇桨的大个子插进来说:“就说这小船和大海吧。用小船去量海水,肯定能得出一个精确的数字。一切事物之间都是可以用数字互相表示的。”

  “我看不一定。”这时船尾的一个学者突然提问了,他沉静地说:“要是量到最后,不是整数呢?”

  “那就是小数。”“要是小数既除不尽,又不能循环呢?”

  “不可能,世界上的一切东西,都可以相互用数字直接准确地表达出来。”

  这时,那个学者以一种不想再争辩的口气冷静地说:“并不是世界上一切事物都可以用我们现在知道的数来互相表示,就以毕达哥拉斯先生研究最多的直角三角形来说吧,假如是等腰直角三角形,你就无法用一个直角边准确地量出斜边来。”

  这个提问的学者叫希帕索斯,他在毕达哥拉斯学派中是一个聪明、好学、有独立思考能力的青年数学家。今天要不是因为争论,还不想发表自己这个新见解呢。那个摇桨的大个子一听这话就停下手来大叫着:“不可能,先生的理论置之四海皆准。”希帕索斯眨了眨聪明的大眼,伸出两手,用两个虎口比成一个等腰直角三角形说:

  “如果直边是3,斜边是几?”

  “4。”

  “再准确些?”

  “4.2。”

  “再准确些?”

  “4.24。”

  “再准确些呢?”

  大个子的脸涨得绯红,一时答不上来。希帕索斯说:“你就再往后数上10位、20位也不能算是最精确的。我演算了很多次,任何等腰直角三角形的一边与余边,都不能用一个精确的数字表示出来。”这话像一声晴天霹雳,全船立即响起一阵怒吼:“你敢违背毕达哥拉斯先生的理论,敢破坏我们学派的信条!敢不相信数字就是世界!”希帕索斯这时十分冷静,他说:“我这是个新的发现,就是毕达哥拉斯先生在世也会奖赏我的。你们可以随时去验证。”可是人们不听他的解释,愤怒地喊着:“叛逆!先生的不肖门徒。”

  “打死他!批死他!”大胡子冲上来,当胸给了他一拳。希帕索斯抗议着:

  “你们无视科学,你们竟这样无理!”“捍卫学派的信条永远有理。”这时大个子也冲了过来,猛地将他抱起:“我们给你一个最高的奖赏吧!”说着就把希帕索斯扔进了海里。蓝色的海水很快淹没了他的躯体,再也没有出来。这时,天空飘过几朵白云,海面掠过几只水鸟,一场风波过后,这地中海海滨又显得那样宁静了。

  一位很有才华的数学家就这样被奴隶专制制度的学阀们毁灭了。但是这倒真使人们看清了希帕索斯的思想价值。这次事件后,毕达哥拉斯学派的成员们确实发现不但等腰直角三角形的直角边无法去量准斜边,而且圆的直径也无法去量尽圆周,那个数字是 3.14159265358979……更是永远也无法精确。慢慢地,他们感觉后悔了,后悔杀死希帕索斯的无理行动。他们渐渐明白了,明白了直觉并不是绝对可靠的,有的东西必须靠科学的证明;他们明白了,过去他们所认识的数字“0”,自然数等有理数之外,还有一些无限的不能循环的小数,这确实是一种新发现的数——应该叫它“无理数”。这个名字反映了数学的本来面貌,但也真实的记录了毕达哥拉斯学派中学阀的蛮横无理。

  由无理数引发的数学危机一直延续到19世纪。1872年,德国数学家载德金从连续性的要求出发,用有理数的“分割”来定义无理数,并把实数理论建立在严格的科学基础上,从而结束了无理数被认为“无理”的时代,也结束了持续2000多年的数学史上的第一次大危机。

  毕达哥拉斯学派的发现

  提起“勾股定理”。人们便很容易与毕达哥拉斯联系起来,西方数学界一般把“勾股定理”叫做“毕达哥拉斯定理”。但据本世纪对于在美索不达米亚出土的楔形文字泥板书所进行的研究,人们发现早在毕达哥拉斯以前1000多年的古代巴比伦人就已经知道了这个定理。而且在中国的 《周髀算经》中记述了约公元前1000年时,商高对周公姬旦的回答已明确提出“勾三、股四、弦五”。不过“勾股定理”的证明,大概还应当归功于华达哥拉斯。传说,他在得出此定理时曾宰杀了100头牛来祭缪斯女神,以酬谢神灵的启示。缪斯是神话中掌管文艺、科学的女神。

  毕达哥拉斯是科学史上最重要的人物之一,他的思想不仅影响了柏拉图,而且还一直影响到文艺复兴时期的一些哲学家和科学家。

  毕达哥拉斯曾旅居埃及,后来又到各地漫游,很可能还曾去过印度。在他的游历生活中,他受到当地文化的影响,了解到许多神秘的宗教仪式,还熟悉了它们与数的知识及几何规则之间的联系。旅行结束后,他才返回家乡撒摩斯岛。由于政治的原因。他后来迁往位于南意大利的希腊港口克罗内居住。在这里创办了一个研究哲学、数学和自然科学的团体,后来便发展成为一个有秘密仪式和严格戒律的宗教性学派组织。

  毕氏学派认为,对几何形式和数字关系的沉思能达到精神上的解脱,而音乐却被看作是净化灵魂从而达到解脱的手段。

  有许多关于毕达哥拉斯的神奇传说。如,他在同一时间会出现在两个不同的地方,被不同的人看到;还有传说,当他过河时,河神站起身来向他问候:“你好啊,毕达哥拉斯”;还有人说,他的一条腿肚子是金子做的。毕达哥拉斯相信人的灵魂可以转生,有人为了嘲弄他的宗教教义而传言,一次当他看到一只狗正遭人打时,他便说:别打了,我从他的声音中已认出,我朋友的灵魂是附在了这条狗身上了。

  如果有人要想加入毕氏团体,就必须接受一段时期的考验,经过挑选后才被允许去听坐在帘子后面的毕达哥拉斯的讲授。只有再过若干年后当他们的灵魂因为受音乐的不断熏陶和经历贞洁的生活而变得更加纯净时,才允许见到毕达哥拉斯本人。他们认为,经过纯化并进入和谐及数的神秘境界,可以使灵魂趋近神圣而从轮回转生中得到解脱。

  毕氏学派企图用数来解释一切,不仅万物都包含数,而且认为万物就是数。他们发现,数是音乐和谐的基础。当一根琴弦被缩短到原来长度的一半时,拨动琴弦,音调将提高8度;比率为3∶2和4∶3时,相对应的是高5度和高4度的和声。和声就是由这样一些不同的部分组成的整体。他们认为,正是由于各种事物的数值比确定了它们分别是什么,并显示出彼此之间的关系。

  毕氏学派在哲学上与印度古代哲学有相类似之处。都是把整数看作是人和物的各种性质的起因,整数不仅从量的方面而且在质方面支配着宇宙万物。他们对数的这种认识和推崇,促使他们热衷于研究和揭示整数的各种复杂性质,以期来左右和改变自己的命运。

  他们对整数进行了分类。如整数中包含有奇数、偶数、质数、亲和数及完全数等等。

  他们注意到整数48可以被2、3、4、6、8、12、16、24、整除,这8个数都是48的因子,这些因子的和是75;奇妙的是75的因子有3、5、15、25,而它们的和又恰好是48。48与75这一对数叫做“半亲和数”。不难验算出140与195也是一对半亲和数。考虑到1是每个整数的因子,把除去整数本身之外的所有因子叫做这个数的“真因子”。如果两个整数,其中每一个数的真因子的和都恰好等于另一个数,那么这两个数,就构成一对“亲和数”。

  220与284是毕达哥拉斯最早发现的一对亲和数,同时也是最小的一对亲和数。因为220的真因子是1、2、4、5、10、11、20、22、44、55、110,而它们的和是284。284的真因子是1、2、4、71、142,其和恰好是220。有人曾经把亲和数用于魔术、法术、占星学和占卦上,使它带有迷信和神秘的色彩。如认为若两个人都佩带上分别写着这两个数的护符,就一定保持良好的友谊,这当然是非常滑稽可笑的。

  有趣的是,后来人们总保持着对亲和数研究的兴趣。1636年,法国数学家费马发现了第二对亲和数,它们是17962与18416。两年后笛卡儿找出了第三对亲和数。瑞士的大数学家欧拉曾系统地去寻找亲和数,1747年他一下子找出了30对,3年后他又把亲和数增加到了60对。令人惊奇的是,除去220与284之外最小的一对亲和数1184与1210竟然被这些数学大师们漏掉了。它被一个16岁的意大利男孩帕加尼尼在1886年发现。至今,已经知道的亲和数已有1000对以上。

  更有趣的是人们还发现了亲和链:

  2115324,3317740;

  3649556,2797612。

  由于第一个数的因子之和是第二个数,第二个数的因子之和是第三个数……第四个数的因子之和又恰好是第一个数,它们是一个四环亲和链。一些构成亲和链的数,只要给出其中的一个,便可以计算出其他的数。如 12496与其他四个数构成一个五环亲和链。有计算器的读者不妨试算一下,补上其余的四个数。

  其他与占卦臆测有联系的是完全数。完全数的真因子之和是它自己,就好像自己和自己是“一对”亲和数。最小的完全数是6=1 2 3。毕氏信徒们认为,数具有象征性的含义。例如,4是公正或报应的数,表示不偏不倚。上天创造世界,6就是个完全数。整个人类是诺亚方舟上的神灵下凡,这一创造是不完善的,因为8不是完全数,它大于它的真因子和:1 2 4。像4、8这样的数叫做亏数。相反凡小于其因子和的整数叫做盈数。

  最小的三个完全数是6,28,496。直到1952年人们才发现12个完全数。

  n欧几里德的《原本》第九卷的最后一个命题是,证明:如果2-1是一个质数,

  n   n则2-1(2-1)是一个完全数。由这个公式所给出的完全数都是偶数。后来大数学家欧拉证明了每一个偶完全数必定是这种形式的。人们自然会问,是否还有其他的完全数?即有没有奇完全数?但至今还没有人能够回答这个问题。

  1952年,借助SWAC数字计算机,又发现了五个完全数:1957年用瑞士的BESK计算机发现了另外一个;后来有人用IBM7090计算机又发现了两个。至今为止已知道的完全数已有27个。毕氏学派是一个带有神秘色彩的宗教性组织,但是他们对于数学的研究确实作出了重大贡献。由于华达哥拉斯的讲授都是口头的,按照他们的习惯,对于各种发现或发明都不署个人姓名,而是都归功于其尊敬的领导者,所以很难辨别出他们研究的成果究竟是由谁来完成的。毕氏学派后来在政治斗争中遭到失败,毕达哥拉斯逃到塔林敦后,终于还是被杀害。他死后,他的学派的影响却仍然很大,其学派又延续了200年之久。

本文由澳门威斯尼斯人网址发布于澳门威斯尼斯人网址,转载请注明出处:费马大定律,圆面积求法

关键词:

最火资讯