澳门威斯尼斯人网址:原子论的创立,世界科技

来源:http://www.aviodelta.com 作者:澳门威斯尼斯人网址 人气:60 发布时间:2019-09-16
摘要:布鲁诺被烧死的消息传出以后,在当时的文明世界——大学里激起振荡。大学生中间议论纷纷,有的拍手称快,有的忿忿不平,引起争吵,打开群架,甚至拔剑格斗。也有曲涌到当时在

  布鲁诺被烧死的消息传出以后,在当时的文明世界——大学里激起振荡。大学生中间议论纷纷,有的拍手称快,有的忿忿不平,引起争吵,打开群架,甚至拔剑格斗。也有曲涌到当时在英国威尼斯帕多瓦大学执教的伽利略教授屋里倾吐衷肠。伽利略这个“日心说”的信奉者,对布鲁诺的殉难感到万分愤慨。

核磁共振仪广泛用于有机物质的研究,化学反应动力学,高分子化学以及医学,药学和生物学等领域。20年来,由于这一技术的飞速发展,它已经成为化学领域最重要的分析技术之一。 早在1924年,奥地利物理学家泡里就提出了某些核可能有自旋和磁矩。"自旋"一词起源于带电粒子,如质子、电子绕自身轴线旋转的经典图像。这种运动必然产生角动量和磁偶极矩,因为旋转的电荷相当于一个电流线圈,由经典电磁理论可知它们要产生磁场。当然这样的解释只是比较形象的比拟,实际情况要比这复杂得多。 原子核自旋的情况可用自旋量子数I表示。自旋量子获得,质量数的原子序数之间有以下关系: 质量数 原子序数 自旋量子数 奇数 奇数或偶数 1/2,3/2,5/2…… 偶数 偶数 0 偶数 奇数 1,2,3…… 1>0的原子核在自旋时会产生磁场;I为1/2的核,其电荷分布是球状;而I≥1的核,其电荷分布不是球状,因此有磁极矩。 I为0的原子核置于强大的磁场中,在强磁场的作用下,就会发生能级分裂,如果用一个与其能级相适应的频率的电磁辐射时,就会发生共振吸收,核磁共振的名称就是来源于此。 斯特恩和盖拉赫1924年在原子束实验中观察到了锂原子和银原子的磁偏转,并测量了未成对电子引起的原子磁矩。 1933年斯特恩等人测量了质子的磁矩。1939年比拉第一次进行了核磁共振的实验。1946年美国的普西尔和布少赫同时提出质子核磁共振的实验报告,他们首先用核磁共振的方法研究了固体物质、原子核的性质、原子核之间及核周围环境能量交换等问题。为此他们两位获得了1952年诺贝尔物理奖。50年代核磁共振方法开始应用于化学领域,1950年斯坦福大学的两位物理学家普罗克特和虞以NH4NO3水溶液作为氮原子核源,在测定14N的磁矩时,发现两个性质截然不同的共振信号,从而发现了同一种原子核可随其化学环境的不同吸收能量的共振条件也不同,即核磁共振频率不同。这种现象称为"化学位移"。这是由于原子核外电子形成的磁场与外加磁场相互作用的结果。化学位移是鉴别官能团的重要依据。因为化学位移的大小与键的性质和键合的元素种类等有密切的关系。此外,各组原子核之间的磁相互作用构成自旋──自旋耦合。这种作用常常使得化学位移不同的各组原子核在共振吸收图上显示的不是单峰而是多重峰,这种情况是由分子中邻近原子核的数目,距离用对称性等因素决定,因此它有助于提示整个分子的。 由于上述成果高分辨核磁共振仪得以问世。开始测量的核主要是氢核,这是由于它的核磁共振信号较强。随着仪器性能的提高,13C,31P,15N等的核也能测量,仪器使用的磁场也越来越强。50年代制造出IT磁场,60年代制造出2T的磁场,并利用起导现象制造出5T的起导磁体。70年代造出8T磁场。现在核磁共振仪已经被应用到从小分子到蛋白质和核酸的各种各样化学系统中。

核磁共振仪广泛用于有机物质的研究,化学反应动力学,高分子化学以及医学,药学和生物学等领域。20年来,由于这一技术的飞速发展,它已经成为化学领域最重要的分析技术之一。 早在1924年,奥地利物理学家泡里就提出了某些核可能有自旋和磁矩。 "自旋"一词起源于带电粒子,如质子、电子绕自身轴线旋转的经典图像。这种运动必然产生角动量和磁偶极矩,因为旋转的电荷相当于一个电流线圈,由经典电磁理论可知它们要产生磁场。当然这样的解释只是比较形象的比拟,实际情况要比这复杂得多。 原子核自旋的情况可用自旋量子数I表示。自旋量子获得,质量数的原子序数之间有以下关系: 质量数 原子序数 自旋量子数 奇数 奇数或偶数 1/2, 3/2 , 5/2…… 偶数 偶数 0 偶数 奇数 1,2,3…… 1>0的原子核在自旋时会产生磁场;I为1/2的核,其电荷分布是球状;而I≥1的核,其电荷分布不是球状,因此有磁极矩。 I为0的原子核置于强大的磁场中,在强磁场的作用下,就会发生能级分裂,如果用一个与其能级相适应的频率的电磁辐射时,就会发生共振吸收,核磁共振的名称就是来源于此。 斯特恩和盖拉赫1924年在原子束实验中观察到了锂原子和银原子的磁偏转,并测量了未成对电子引起的原子磁矩。 1933年斯特恩等人测量了质子的磁矩。1939年比拉第一次进行了核磁共振的实验。1946年美国的普西尔和布少赫同时提出质子核磁共振的实验报告,他们首先用核磁共振的方法研究了固体物质、原子核的性质、原子核之间及核周围环境能量交换等问题。为此他们两位获得了1952年诺贝尔物理奖。50年代核磁共振方法开始应用于化学领域,1950年斯坦福大学的两位物理学家普罗克特和虞以NH 4NO3水溶液作为氮原子核源,在测定14N的磁矩时,发现两个性质截然不同的共振信号,从而发现了同一种原子核可随其化学环境的不同吸收能量的共振条件也不同,即核磁共振频率不同。这种现象称为 "化学位移"。这是由于原子核外电子形成的磁场与外加磁场相互作用的结果。化学位移是鉴别官能团的重要依据。因为化学位移的大小与键的性质和键合的元素种类等有密切的关系。此外,各组原子核之间的磁相互作用构成自旋──自旋耦合。这种作用常常使得化学位移不同的各组原子核在共振吸收图上显示的不是单峰而是多重峰,这种情况是由分子中邻近原子核的数目,距离用对称性等因素决定,因此它有助于提示整个分子的。 由于上述成果高分辨核磁共振仪得以问世。开始测量的核主要是氢核,这是由于它的核磁共振信号较强。随着仪器性能的提高,13C,31P,15N等的核也能测量,仪器使用的磁场也越来越强。50年代制造出IT磁场,60年代制造出2T的磁场,并利用起导现象制造出5T的起导磁体。70年代造出8T磁场。现在核磁共振仪已经被应用到从小分子到蛋白质和核酸的各种各样化学系统中。

  物质构造的探讨

化学家戴维虽然是化学家,可是手中却操的是物理学的武器,就像那林冲反倒借了李逵的斧子。戴维借了刚刚出现不久的电学这把利斧,在还是一片荒芜的化学世界里,噼噼啪啪地一阵乱砍,终于拓出一条条小路,找见了钾、找见了纳,找见了钡、镁、钙、锶等元素。许多复合物在电斧下都被分解出来,他一路砍得性起,后来连硫、磷、碳、氮这些毫无问题的元素也要砍上几斧,希望再砍出几个新元素来,其结果当然是失败了。这便又生出一个问题,什么物质还能分解开来?什么物质,便不易再分?若在一直分下去,又会分成什么样子?而这又回到我们第一回里提的那个

  火刑固然可以烧毁勇士的身躯,但却不能禁灭科学的真理。伽利略决心踏着哥白尼的足迹,在轰击禁区的坎坷征途上继续前进。

  工业革命兴起后,机器大工业所产生的精密天平、分光仪器、化学试剂、电解方法等,为化学研究提供了大量新课题和物质技术手段。

“世界是什么”的老问题上来了。 世界是什么?凡人睁开眼看到天地万物便不觉想寻根究低。三千年前中国古代学者认为世界大概是金、木、水、火、土这五种“元素”组成的。它们相互搭配,所以世界就出现千差万别。我们在第一回里提到的那个古希腊学者泰勒斯则推断水为万物之源,只有湿润才能生万物,物质由水而来,又化水而去。稍后的希腊学者赫拉克利特(前535~前475)又提出火是万物的基础,世界不过是一团燃烧着的永恒的火。我们第二回提到的那个毕达哥拉斯则认为数是万物之源,不过这已有点神秘了。这些古希腊学者中最有学问的要算德谟克利特(前460~前362)了。他认为事物的本源是原子的排列。它们所以有形态、颜色、味道等许多的不同,那是因为组成它们的原子大小、形状及排列方式不同。这个猜想真还想到了最要紧之处。它的出发点是唯物的,就是要沿着事物本身去寻根究底。与这同时,我国战国时期也出现类似的思想,墨翟就提出物质微粒说,他称之为“端”,而在《墨子》中已论述到物质无限可分的思想了:“一尺之棰,日取其半,万世不竭。”即你拿一根短棍,今天取一半,明天取一半,后天再切一半,这样一直切下去,那是永远切不完的。

  1610年初,意大利威尼斯的居民处于骚动之中,他们聚集在“圣马可”广场上,眼望着大教堂钟楼上的一根奇怪的管子。人们交头接耳地议论说,通过这根管子可以看见往日所看不见的景物。这根管子就是伽利略创制的第一架天文望远镜。

  玻义耳在18世纪提出元素概念,把化学确立为科学。紧接着拉瓦锡提出燃烧的氧化学说,推翻了燃素说,使化学走L了正确的发展道路。

可是正当德谟克利特刚提出原子说要接触到世界的本质时,希腊又出现了一个学者叫亚里士多德(前385~前322),他认为世界是由火、空气、水、土四种“元素”组成的,而每种“元素”又都表现为热、冷、湿、干,一种元素通过热、冷、湿、干的变化就可以渡而成另一种元素。亚里士多德当时是学术界的最高权威,神圣不可侵犯,他的思想竟统治世界一千来年。这种元素能互变的思想,比起原子论当然是一种退步,而且无论在中国、外国,它又引出一种炼金术来。许多炼丹术士,梦想能炼出长生不老的金丹。就是那雄才大略的秦始皇、汉武帝也都受骗上当,在这方面花费上许多钱财。他们也总梦想点石成金,经过一烧一炼,将普通的铜铁炼成贵重的黄金。从公元前二三世纪开始希腊就有人干这些蠢事竟一直延续到10世纪,许多君王都想通过这来解决他们的财政问题。一直到1782年,英国科学已发达,出现了牛顿、戴维,出现了皇家学会,也还有人在做这个梦。有一天英皇乔治三世在宫里闷坐,正为日渐拮据的财政发愁,忽有人来访,说他能点铁成金,而且还带来了黄金样品。英王一听,连忙召见,来人捧上样品,真个沉甸甸,黄灿灿,耀人眼目。英皇忙问,怎么个炼法。来人称:“臣自幼学习化学,现是皇家学会会员。现在所用炼金之法,并不像古术士那样火烧顽石,而是用最新化学方法使几种元素参加化学反应生成黄金。”英皇一听,又是皇家学会会员,又是最新方法,面前又摆着这一堆真金,喜得君颜大开,忙命收下样品,并通知牛津大学授他一个博士学位。谁知这事惹起牛津大学和皇家学会的教授学者们的激烈争议,有人说也许真能点铁成金,有人说根本是异想天开,争论的结果还是请这位18世纪的术士当众一试。那人也慨然应允,约好日期,他去准备。到那天,观众到齐,人们到实验室请他出台,谁知一推房门,他已伏在桌子上服毒身死。他本是自欺欺人,现在当然过不了这一关,只好一死了之。

  通过望远镜,伽利略观察到月亮的表面上有起伏不平的“山脉”和“海洋”,这就驳斥了天上星球完美无缺的神话;观察到木星有四颗卫星,如同月亮围绕地球转一样,这就驳斥了只有地球是一切天体的中心的谎言;观察到金星呈现时盈时缺的现象,这就证明了较小的天体绕着较大的天体公转是自然规律……。所有这些发现,都对地心说是一个沉重的打击,而为哥白尼学说提供了确凿证据。

  19世纪,化学由它的经验阶段迈进到理论阶段,建立了由无机化学、有机化学、分析化学、物理化学组成的完整体系,成为化学发展的黄金时代。

却说化学就是这样在浑浑噩噩中摸索。有时柳暗花明,有时山重水复。直到英国出了个波义耳,才推翻了亚里士多德的“四元素”说,确立了元素的科学概念。法国出了个拉瓦锡又推翻了“燃素说”,确立氧化的科学思想,而且排出了最初的元素表。看来物质确实是可以越分越细的。就像力学在伽利略之后要有牛顿、电学在法拉第之后要有麦克斯韦,这化学也着实需要一个人出来在理论上概括一下了。

  然而,证据愈是确凿,教会的忿恨就愈是炽烈,他们觉得伽利略的发现太可怕了,伽利略是在煽动顺民们背弃对《圣经》的信仰。因此,基督教会终于伸出铁爪,准备封住伽利略的嘴。

  19世纪无机化学的发展,主要是围绕原子一分子学说的创立、各种新元素的发现和化学元素周期律的最后完成来展开的。

你道这个赶上机遇的幸运者是谁?他是英国一个教会中学的普通教员道尔顿(1766~1844)。

  宗教裁判所的法庭发出警告,伽利略必须放弃哥白尼学说,不得为他辩护,否则将受到监禁处分。

  原于一分于学说,是化学各个分支共同的理论基础,在它创立之前,化学上发现了当量定律、定比定律等一系列的经验定律。

道尔顿出生于一个贫寒的农民家庭,只读过几年小学就在家种地,但他顽强自学,1780年时终受聘到肯达尔城的一所教会中学任教。你想这个道尔顿在乡间耕锄之余还要寻书觅字,现在进了城更是如鱼入海,终日访贤问能,汲取知识。一日他听说城东住着一个叫约翰·戈夫的老人极是博学,便去造访。他轻轻叩门,里面一个苍老的声音应声道:“请进!”他推开门,只见迎窗背门坐着一位老者满头白发,听见有人进来也不转身,问道:“你是谁?”

  教会的告诫并没有能阻止伽利略的科学活动,1632年,伽利略在佛罗伦萨出版了题为《关于托勒密和哥白尼两种世界体系的对话》,以更为巧妙的方式宣传哥白尼的学说,这件事使罗马教庭大为震怒。1633年2月,教皇命令把年近古稀的伽利略送到罗马。宗教裁判所对枷利略进行了多次的审讯,强迫他放弃“邪说”。这时,许多朋友都要求伽利略退让一下,他的女儿舍勒斯特也写了许多痛哭流涕的信来哀求他。然而,伽利略不但没有低头,反而坚定地说:“悔改?!要我悔恨什么?难道叫我把真理隐藏起来……!”

  1791年,德国化学家李希特尔在进行完全化学反应时。发现一定量的一种元素总是和一定量的另一种元素相互作用。在酸碱反应中,他发现中和一定数量的酸,也需要确定的相当数量的碱,反之亦然。于是,他提出了中和定律和当量定律。

“先生,我是约翰·道尔顿,刚来的中学教员。” “

  1633年6月21日清晨,伽利略被带进了宗教裁判所的拷问室,直到三天之后他才被放了出来。宗教裁判所判他终身监禁,伽利略被迫在叛决书上签了字。可是,在他站起来之后,依然喊到:“但是,地球依然在转着!”

  法国化学家费歇尔揭示了任何纯净的化学物质在相互化合时,都按照相当的量成比例地进行。在1802年,他制定出早期的酸碱化合当量表。

找我有什么事?”老人回过头来。

  伽利略被监禁后,教会并没有停止对他的迫害,他们强迫他每周作一次忏悔仪式,派特务监视他的行动,不准他接见家属和朋友,使这位风烛残年的老人失去所有的自由。伽利略在教会的长期折磨下,终于双目失明。1642年1月8日,伟大的伽利略离开了人间。

  1799年,法国药剂师普罗斯在大量的实验中,通过定量研究发现,两种或两种以上的元素,在化合成某种化合物时,它们的比例是天然一定的,各种成分既不能增加,也不能减少。于是他在系统的、精密测定的基础上,提出了定比定律。

道尔顿这才看清,他已双目失明,忙回答:“向您请教一点教学、化学方面的学问。”

  法国著名作家巴尔扎克说过:“创造发明吧,那么你就必然受到迫害,像罪犯一样丧生;依样画葫芦吧,那么你就像个傻瓜一样过着幸福的生活。”这句话反映顾了部分史实。

  普罗斯的定比定律没有立即得到人们的承认,而是引起怀疑和反对。当时,法国化学界的权威贝特雷从“化学亲合力”的角度,认为一种物质可与有相互亲合力的另一种物质以一切比例相化合。直到1860年,比利时化学家斯达才把这一定律确定下来。

“我能感觉到你很激动。大概是没想到我是个瞎老头吧。”

  不过,历史证明,科学真理终究是不可抗拒的。伽利略300多年的沉冤,在1980年终于得到平反昭雪,这的确是一件寓意深刻的事情。

  随着当量定律和定比定律的发现,人们感到氧化学说不能解释一切化学现象。

这老头虽是双目失明,感觉却十分敏锐。他转过椅子和道尔顿攀谈起来,不一会儿两人就成了好朋友。他们谈天说地,从数学说到物理,说到天文,说到化学,谈到高兴处,老人站起来走到一张大桌旁要给道尔顿亲自做几个实验。只见他伸手抽出一只试管,又从架上拿下一只瓶了倒出一点药粉,装入管内,又嚓地一声,划火柴点着酒精灯,将试管移向灯头加热,准备水缸,收集蒸汽,又测比重,又测压力。那双手熟练得他用什么物件,恰如那物件就正等在那里。那双眼倒不像是失明了,而是一个明眼人干这种事干得太熟了,懒得睁眼去看。道尔顿在一旁看得屏气凝神,真没想到此时会有这么一个奇人。实验做完他连忙请教老人何以有这样高超的技艺。老人答:“一是靠熟练,二是靠细心,要干的事没有不成。”自此道尔顿就常来请教,约翰·戈夫老年无后也就以子相等,倾其胸中才学,教他希腊文、拉西文、法文和物理、化学、教学。道尔顿在这个小城市教中学12年,倒跟这位盲老人补习了大学的全部课程。各位读者,也不要只说是道尔顿赶上了历史的机遇,你想与他同时的人何止千万,而像他这等见缝插针、自学自强的人却着实不多,原来机遇却又是专奖给那些经过苦苦追求的人。

  1979年11月10日,意大利罗马教皇,在一次公开集会上,正式承认枷利略在17世纪30年代受到教会的审判是不公正的。1980年10月,教皇又在梵蒂冈举行的世界主教会议上,提出重新审理这一冤案。

  怎样科学地解释在化令物和化学反应中的数量关系呢?人们想到化学元素可能是由占希腊人提出的原子构成的,也可能是玻义耳等人主张的物质微粒所构成的。

道尔顿经约翰·戈夫指点,积12年之功,已经是学富五车,才思敏捷,更可喜的是养成了一个勤观察爱思考的好习惯。他有一次为孝敬老母买了一条长筒袜子送回家里,不想老母一见立即不悦道:“孩子,就算你有孝心吧,也不能让我这样的年纪穿这樱桃红的艳色袜子去教堂做礼拜吧。”这一句话把道尔顿说得丈二和尚摸不着头脑。”他说:“这明明是正合你老人家穿的深蓝色嘛,怎么会是樱桃红呢?”在场的人见状都哈哈大笑。后来道尔顿又拿各种颜色纸让他的学生去认,终于他成了第一个发现和研究色盲的人。于是他专门就此写了论文,并且留下遗嘱,死后请将自己的眼球拿去解剖,好探清色盲的原因。 道尔顿除研究色盲外,最长期的大量的工作就是观察天气,他一生记了20万条观察记录,直到临列的前15分钟还记了一条:今日微雨。他的生活及有规律,每天8点起床,先生好实验室的火炉,然后吃早饭,整个上午做实验,下午1点吃饭,然后再在实验室工作到5点,喝茶,再干到晚上9点,吃饭,休息。他在观察天气时对空气发生了兴趣。空气是那么自由均匀地流动,而盛在容器里,又难容器均匀的压力。他工作累了,在炉边喝茶时,那茶香又均匀地飘散到整个房间。看来气体是些极小的微粒,要不它怎能这能这样自由地、均称地溶融呢?他想起德谟克利特的关于原子的设想,看来有一点儿道理。不过那毕竟还是一种哲学的推测,要变成化学的原子论,自然还得经过化学实验的验证。但是在无数次实验中,道尔顿早就发现这种元素的结合总是按一定的比例,比如把氢气和氧气放在一起化合,总是两份氧气和一份氢气结合成水。要是氢气用完了, 氧气还有剩余,它永远也只能是氧气而不可能是硬挤到水里去。这样,一个伟大的思想产生了,他在1808年终于写成《化学哲学的新体系》一书。指出:“化学的分解和化合所能做到的,充其量只是使原子彼此分离和再结合起来。 物质的新的创造和毁灭,却不是化学作用所可能的做到的。其所以不可能,正如我们不可能在太阳系中放进一颗新的行星或消灭一颗现存的行星那样,或者正如我们不可能创造出或消灭掉一个氢原子一样。”就是说物质各由各自的原子组成,想把铁原子变成金原子是办不到的,千百年来那些梦想炼铁成金的人,不知个中底细,就这样一代一代地捞啊,捞啊,你想怎能不是一场空梦?

  教皇宣布之后,一些世界著名的科学家组成了一个委员40会。委员会由意大利国家核物理研究院院长吉基齐教授任主席。六名成员全部由诺贝尔奖金获得者组成。他们是:美籍华人杨振宁、丁肇中,日本学者江崎,巴基斯坦的萨拉姆,澳大利亚的艾克来,以色列的魏格纳。委员会的任务是:“研究科学同宗教信仰的关系,伽利略案件的科学方面及伽利略学说对现代科学思想的贡献”。

  古希腊哲学家德漠克利特提出了比较系统的原子学说。他认为,原子是一种不可再分的最小的物质粒子,是构成物质世界的统一的物质本原。原子本身具有运动的属性,物质世界的运动,实际是原于的运动。

既然元素的原子各自不同,那么它的质量一定不同。但你想那原子何等的小,后来人们才知道,它的直径只有一亿分之一到一亿分之四厘米。拿五十万个原子摆在一根头发丝的直径上也能放下,而一个原子的质量也只有1/100 000 000 000 000 000 000 000克。道尔顿当时自然不能拿杆秤去称它一下,但是聪明的道尔顿却想出一个妙法,根据各种元素在化合反应时的比例,选择最轻的氢,定它的原子量为1,以它为基准,其它元素是氢的几倍就是它的原子量。这真是任你小到再小,大到再大,秤不能称,尺不能量,可是人的思维却无孔不入,无远不至,轻而易举地解决了问题。这道尔顿在1803年9月6日就用他的这种办法很快列出了化学史上第一张有6种简单原子和15种化合物原子的原子量表。为了区分这些各不相同的原子,道尔顿制定了一套元素的符号表。道尔顿一下子成了名人。他并不注重名誉,但是戴维不和他商量就把他吸收为皇家学会会员。英国政府授予他金质奖章,柏林科学院授予他名誉院士,法国科学院授予他名誉理士。

  烤不毁的真理

  玻义耳认为,物质是由基本微粒构成的,微粒的不同排列和组合,构成了各种物质。

  17世纪的西欧医学界,盖伦学说占据着绝对统治的地位。盖伦认为,人的血液是从肝脏中得到一种“自然”的精神,从左心房得到一种“活”的精神,从脑筋里得到一种“动物”的精神。动脉和静脉之间没有任何联系。人的整个机体是由“灵魂鼓动起来的”,而肉体只不过是“灵魂的工具”而已。盖伦的这种说法正合教会的口味,因而盖伦被基督教会奉为“医学之父”,他的学说被视为不容置疑的“绝对真理”。

  原子论的创立

  塞尔维特并没有被禁区所束缚,他经过十年的医学实践和对解剖学的深入钻研,发表了他的名著——《基督徒的复兴》,大胆地对盖伦的学说提出了疑义,并在人类医学史上,第一次发现了心脏与肺部之间的血液小循环。塞尔维特指出:由右心室出来的血液通过肺动脉而进入肺部,再经过肺静脉流入左心房。血液在肺部放出“焦味、煤烟和尘埃”,重新恢复鲜红的颜色,被洗清的血液又回到心脏,再沿着动脉和毛细血管散布到全身。

  但是,无论是原子说还是微粒说,都只是一种猜测,近代化学的物质结构学说需要有可靠的实验事实、精确的定量分析、合理的逻辑论证。

  塞尔维特明确地提出“灵魂本身就是血液”的观点,这就意味着灵魂并不是永存的,它将随肉体的死亡而消失。这一观点不仅推翻了盖伦的愚昧的旧医学观点,而且把斗争的锋芒直指神圣不可侵犯的基督教会,因此,残酷的迫害降临在塞尔维特的身上。

  这首先是由英国化学家道尔顿完成的。他所创立的科学的原子论,对化学、物理学乃至整个科学都产生了极为深远的影响。

  1553年1月,塞尔维特化名发表的《基督教的复兴》一书传到了日内瓦,很快就落到了曾和塞尔维特保持多年通讯联系的论敌、新教派的首领加尔文手中。狡猾的加尔文在这部著作的末尾,看见MSV的字样,立即猜到这是米盖尔·塞尔维特·维里涅夫的缩写字母,于是塞尔维特就被加尔文告发,送进了宗教裁判所的监狱。

  约翰·道尔顿于1766年9月6日出生在英国坎伯兰郡一个穷乡僻壤的茅屋里。父亲是个贫苦农民兼做织工,由于收人微薄还要养活6个子女,家庭经济相当困难。

  教会以死刑来威胁,强迫塞尔维特放弃他的“异端邪说”,然而,塞尔维特坚定地回答说:“我相信自己的言行都是公正的,我不怕死,你们只会用诽谤来反驳我的学说,但是举不出有份量的论证。……我知道我将为自己的学说为真理而死,但这并不会减少我的勇气。”

  尽管家境贫寒,在道尔顿6岁时,父母还是想方设法让他上了本村小学。道尔顿好学深思,成绩优秀。对于一些难题,一般学生在做不出来时,就去请教老师了。但道尔顿有股韧劲,解不出难题决不罢休。

  1553年10月23日,在塞尔维特拒绝放弃自己观点以后,被教会送上了火刑场,在烧死前还把他活活地烤了两个钟头。在这同时,还烧毁了塞尔维特的全部著作。伟大的实验

  有时候,为了一个难题,道尔顿要思考几天,老师便想指点一下,道尔顿说:“请不要帮忙,我一定要自己做。”因此,道尔顿深受老师的喜爱,弗莱彻先生称赞说:“在这些孩子中间,就思想的成熟而论,谁也比不上道尔顿。”

  鸡胚胎的研究

  几年后,由于家里实在交不起学费,道尔顿被迫辍学。但热爱学习的道尔顿仍然不时地去学校旁听。

  亚里斯多德于公元前384年生在斯塔吉拉 (希腊在小亚细亚的一个殖民地)。他的父亲是个医生,是当地同业公会的会员。亚里斯多德很小就成了孤儿,是一个亲戚把他抚养成人的。看来,亚里斯多德可能在幼年时期就从他父亲那里获得了医学和生物学的某些知识。

  道尔顿在12岁时担任本村小学的教师,一边教书,一边从事田间劳动。

  亚里斯多德18岁进入雅典的柏拉图学院。在那里他一直学习到公元前347年柏拉图逝世为止。看来他在很年轻的时候就解剖过一些什么动物。他在这个时期的生活轶事说明,他具有时髦的风度、聪明的才智和严厉的性格,并因此而引起过旁人的嫉妒和不满。柏拉图死后,他就离开雅典,去到阿塔纽斯,一个小王国。这里的统治者赫尔米亚斯召集了一批柏拉图学派的学者。亚里斯多德到这里不久,就和赫尔米亚斯的养女佩西娅丝结婚了。结婚后生了一女孩,取名叫她妈妈的名字。亚里斯多德的妻子不久去逝,以后他就和一个名叫赫佩丽丝的女人建立了家庭。虽然他们没有正式结婚,但他们终身住在一起,并有一个儿子名叫尼可马可斯;亚里斯多德曾为他的儿子写过一篇修身明理的文章 《尼可马可斯行为准则》,一直流传至今。

  1781年,15岁的道尔顿外出谋生,来到肯代尔镇,在他表兄办的中学担任教员。在教学之余,他发奋读书,无论是数学、物理,还是哲学、文学,他都爱不释手,广泛阅读。

  亚里斯多德在阿塔纽斯呆了三年,然后就搬到了列斯波斯岛上的米提林居住。就在那里,他进行了大量的生物学研究工作。大约在公元前343、342年,亚里斯多德应聘当过马其顿国王菲利蒲的儿子亚历山大的私人教师。八年后,他回到了雅典,并建立了自己的学校和图书馆。学校像科学院,而图书馆则起着相当于现代大学的作用,只不过没有现代这么正规的组织罢了。

  1793年,道尔顿受聘到曼彻斯特一所新学院,讲授数学和自然哲学。

  公元前322年,亚里斯多德由于感情上和马期顿人不合,退隐到查尔西斯。他曾经说过,他不想给雅典人以机会,像毁掉苏格拉底那样,再毁掉一个哲学家。不久,他就在查尔西斯与世长辞了。

  这一年,道尔顿第一部科学著作 《气象观察和研究》在曼彻斯特出版。在这部著作里,道尔顿分析了云的形成、蒸发过程和大气降水量的分布等,总结了他的观测结果,对气象学的形成和发展,起了一定的启蒙作用。

  亚里斯多德和达尔文一样,是最伟大的生物学家之一。是他最早对生物进行了系统观察,并写下了关于各种生物的详细著作,如我们所知的 《动物发展史》。在这里介绍的第一个实验,就是他做的。这个实验奠定了后来一切胚胎研究的基础。这个实验好就好在它对问题研究的系统性,以及根据研究结果提出问题的敏锐性。

  这部著作的出版,使年仅27岁的青年教师道尔顿引起了科学界的重视。

  动植物生长的天性问题,在亚里士多德以前的希腊思想家就曾进行过深入的考虑。一个新的动物或植物是怎样产生出来的呢?看来它并不是由与母体根本不同的材料构成,它不断变化成长,结构很快就变得相互协调,十分精良。这种结构是按预先的计划形成 (先成说)的呢,还是随生长的不同阶段一步步形成 (后成说)的呢?这个问题至今还未完全解决。很久以来,人们就想知道生长过程,到了公元前345年,亚里斯多德只不过是古往先驱者有关学说的继承人。

  在曼彻斯特期间,道尔顿教学负担繁重,又缺乏实验室,妨碍了他对自然界的科学探索。1799年,道尔顿毅然辞去了教授职务,以当家庭教师为业,过着清贫的生活,在科学的道路上不断地探索、研究。

  亚里斯多德以前流传下来的唯一有价值的医学著作就是《希波克拉底文集》。不管其中的文章是谁写成的,作者都有一个明确的思想,就是可以用非人类动物的胚胎作比较,来了解人类婴儿的生长过程。在一篇名为《关于婴儿的天性》文章中,以非常明白的语言说道;“用二十多个鸡蛋由两只或三只母鸡进行孵化,从孵化的第二天起,每天取一个鸡蛋解剖检查,你将发现,一切情况都和我所说过的一样。就此推广而论,禽类的发育过程可以比作人类婴儿的发育过程。”看来,文章评论家们都认为,该文章并未说明其作者实际上真正进了他所说的考察。这个任务留给了亚里斯多德,下面就是他考察鸡胚胎发育过程的描述。

  道尔顿原子论的建立是从对混合气体扩散的考察开始的。

  亚里斯多德写道:“如前面说过,所有的禽类都是卵生,其方式相同,但孵化周期长短不一。就普通的鸡而言,三天三夜之后,便显露出了最初的胚胎迹象。较大的禽类,时间则稍长一些;较小的禽类,稍短一些。这时,蛋黄上升到鸡蛋的尖头一端,鸡蛋的基本组成部分就此固定下来,得到孵化。心脏最初好像一个血点,出现在蛋白之中。这个血点具有生命,在不停地跳动。随着孵化过程,从中伸出两条血管,每条血管带有外皮,延展形成带血丝的薄膜。其中一层血管薄膜包裹住蛋黄。再稍后便可分辨出鸡身,有眼睛,像两个鼓泡,向外突起。眼睛呈此种状态,要延续相当长一段时间,然后才慢慢缩小,塌陷下去。起初,身体下肢不如上肢明显。从心脏伸出的两条血管,一条连通外膜,另一条像脐带通向蛋黄。鸡的生命元素在蛋白之中,营养物质通过脐带从蛋黄中摄取。

  道尔顿说:“由于长期做气象记录,思考大气成分的性质,我常常感到奇怪,为什么复合的大气,两种或更多种弹性流体的混合物,竟能在外观上构成一种均匀体,在所有力学关系上都同简单的大气一样。”为了了解混合气体的组成和性质,他开始了气体和气体混合物的研究。

  “鸡蛋孵化十天后,其中小鸡的各个部分都明显可见了。头部比其他部分显得还大一些,而眼睛又比头还大,但不十分清楚。如果这时把眼睛取出来,可以看到它比豌豆粒还大,呈黑色。如果把眼的外膜剥开,里面全是发凉的白色液体,在阳光下闪闪发光,没有什么固体物质。头部和眼睛的情况大致如此。一些较大的内部器官,也可看出,如可以看清胃和肠子的分布。从心脏伸出的血管,这时已能看出是和脐带相连的,从脐带引出一对血管,一条通往包裹蛋黄的膜(这时蛋黄已变成流体,或者说比一般蛋黄要稀),另一条通往外膜,此外膜包住包小鸡的膜和包蛋黄的膜,以及二者之间的液体 (随着小鸡的发育,一部分蛋黄逐渐上升,另一部分则逐渐下降,中间则出现一些白色液体。蛋白质处在下面部分蛋黄之下,如此直至消耗殆尽)。到了第十天,蛋白质都处在最外面,量已减少,发粘变硬,呈蜡黄色。

  1801年,道尔顿在一组论文中认为,各地的大气都是由氧、氮、二氧化碳和水蒸汽四种主要物质成分的无数微粒或终极质点混合而成的。

  “小鸡各个组成部分的位置排列如下:首先,最外层是外膜(不是指蛋壳膜,而是指蛋壳膜里面的那层膜);外膜里是蛋白质液体,小鸡和包住小鸡的膜 (这层膜把小鸡和液体隔开);然后是蛋黄和包住蛋黄的膜 (有一条血管通到这层膜,另一条血管遇到外膜)。这就是说,由一层带着类似血清的薄膜包住整个组织,另一层膜只包住胚胎,使胚胎和蛋白质液体隔开,还有一层只包住蛋黄,由心脏大血管引出的脐带与之相通的膜。这样,胚胎与蛋白和蛋黄两种液体都有膜隔开)。

  混合是怎样发生的呢?道尔顿指出,气体混合物的形成是因为气体彼此扩散的缘故。

  “在差不多第20天,如果打开鸡蛋,触动一下其中的小鸡,它就会动弹,并发出啾啾叫声。它已准备出世了,只要一过20天,就会破壳而出。它在壳里把头搁在靠右侧右腿上,用翅膀盖着头。这时还可清楚看到蛋壳膜里那层类似胎衣包住小鸡连着脐带的外膜,整个小鸡还在里面,同时,也可看到另一层类似胎衣,包住蛋黄连着另一根脐带的膜。如前所述,两根脐带都与心脏大血管相连。这时,通往外膜的那根脐带已开始萎缩,并与小鸡脱开;而包住蛋黄那层膜则紧贴在小肠上。这时大量蛋黄已进入小鸡体内,在胃中有黄色沉积物。大约也就在这个时候,小鸡开始向外胎衣方向排泄废物,在胃里也有废物;外面的废物是白色的,胃里的废物也是白色的。蛋黄逐步减少,最后全部用完,进入小鸡体内(如果在孵化十天后,打开鸡蛋,还可在与小肠连接处发现一点蛋黄)。通过上述过程,小鸡发育成长,睡觉、惊醒,动一动,睁开眼,啾啾叫,心脏不断频频跳,充满生命的活力、禽类卵生的胚胎的发育过程就是如此。”

  通过一系列的实验,道尔顿总结出物理学上的气体分压定律:混合气体的总压力等于各组成气体的分压力之和,而每一组成气体的分压力等于该气体独占混合气体原有体积时的压力。这个定律被称为“道尔顿分压定律”,至今仍被广泛应用。

  毫无疑问,在亚里斯多德之后,人们对胚胎学的兴趣依然存在。不仅如此,更多的学者还开展了更广泛的观察实验。不过,亚历山大时期各学派流传下来的有关科学著作很少。中世纪的欧洲所知道的古希腊科学是通过阿拉伯学者学来的,是阿拉伯学者发扬光大了古代科学。虽说伽林和阿维森纳的著作是医学和生物学的最重要来源,但绝大部分中世纪科学的最终来源仍然是亚里斯多德。后来的新著作一般都是评述亚里斯多德著作,中世纪的胚胎学更是如此,都只不过是亚里斯多德《动物发展史》的翻版。

  正是从这里出发,使道尔顿最终走向了有关物质结构和化学反应的原子论道路。

  继承亚里斯多德生物学传统的一篇最成熟的著作《人体在子宫中的形成过程》是罗马人盖尔斯大约在1276年写成的。这篇著作从理论上探讨了父母在生殖过程中的作用,详细说明了胎儿的发育过程,把亚里斯多德关于禽类胚胎的发言过程扩大到了人类胚胎发育过程。盖尔斯著作受到广泛批评,这显示了中世纪胚胎学知识有所增加。据胡森指出,当时弗利·詹姆斯和加博·托马斯批评盖尔斯,说他关于胎膜的论述,援引的不是亚里斯多德的原著,而是阿拉伯著作。

  1802年11月,道尔顿在曼彻斯特学会上宣读了他的第一篇化学论文《组成大气的几种气体或弹性流体的比例的实验研究》,揭示了元素化合存在着某种数量关系。

  主要问题在于三个胎膜的位置、作用和发育顺序。看来很明显,盖尔斯之所以受到批评,是由于他进行了某些解剖研究和引用了新的权威著作。胎膜的发育顺序也许并不是什么重要问题,但它与先成说和后成说的长期论战有关,由来已久的这一论战一直可以回溯到古希腊科学的萌芽时期。

  元素化合时为什么会表现出这种数量关系呢?要解释这个问题,必须揭开物质构造的秘密。

  盖尔斯在引述伽林的著作时,不得不提供出比亚里斯多德原著更丰富更详细的原始材料。这并不是胚胎学革命,而只是后继者对先驱者论述的修正,是传统智慧的进一步发挥。1604年,法布利西在自己的著作《胎儿的形成》中,描述了亚里斯多德曾记载过的许多构造,也讨论了盖尔斯所遇到的麻烦问题,一致同意,胎膜具有保护胎儿和储存废物的双重作用。大家知道,胎儿的发育过程,可以通过血管的发展情况来进行更好的研究。法布利西就曾对脐带的血液系统作了更详细的论述,这是对建设中的知识大厦添砖加瓦。

  道尔顿在研究气体时,提出过微粒的思想。他又想到古希腊的原子论,它认为一切物体都是由不可再分的原子构成的,原子小到不可计量,但是形状、大小和排列都是不同的。

  读了亚里斯多德的论述,一定会感觉到:一是叙事清楚,说清楚了所观察的各个主要环节;二是重点明确,抓住了整个过程的主要生物学原理,就是蛋白和蛋黄的作用。亚里斯多德把鸡胚胎的胎膜与哺乳动物的胎膜相比较,这实际上说明,他已把胚胎观察从一个物种推广到了另一个物种。

  把两者联系起来,道尔顿觉得物质应该是由微粒或者是由原子构成的,但是必须加以证明,才能成为科学的理论。

  然而,从什么意义上说这种观察研究是一种实验呢?在导言中,我已把实验研究分成两类:一种是考察某种事物或某种自然过程;另一种是通过积极干预,排除干扰,专门对特殊效应进行实验研究。古希腊科学大都富于实际考察和理论探索。利用孵化中的鸡蛋,进行有计划的连续考察,为我们提供了研究方法的一种范例,它包含着某种积极的干预和设计。亚里斯多德不是消极等待小鸡的发育成长,最后出现在他的面前,而是按希波克拉底建议的聪明办法,积极干预了自然过程。

  道尔顿最先提出原子量的概念。他以实验为依据,认为物质一定由原子组成,而且原子有一定的大小和质量。但原子的绝对质量非常小,不可能直接测量。于是他把最轻的氢原子的质量规定为 1,并以此为标准来测定其他原子的相对质量,这种相对质量即元素的原子量。

  消化的过程

  道尔顿最早规定的一些元素的原子量记载在1803年9月6日的工作日记上,后来他又增补了一些元素的原子量,并对原来的一些原子量数值做了修订。

  威廉·博蒙特是一个农民的儿子,1785年生于康乃狄克州的勒贝龙。1806年,他想外出历险,骑着一匹马,带了一把砍刀、一桶果汁和100块钱离开了家乡。1807年,他在纽约州的抢普伦找到了一个安生立命的职业,当了一个中学的校长。在该校期间,他广泛阅读了医学及其他科学书籍。1810年,他自愿到佛蒙特州的圣·奥尔班斯跟钱德勒大夫当学徒。两年后他取得了自己开业的执照。1812年,在英美战争中,他参加了美国军队,一直服役到1815年。此后,一直到1820年,他都在宾夕法尼亚州的匹兹堡开业行医。然后,他接受军方的委托,重新加入了军队,分配到密西根地区的麦肯纳克要塞工作。在那里,有一个军队雇员因事故受伤,博蒙特在医治其伤口过程中进行了实验,也就是这里要介绍的消化过程实验。

  道尔顿算出的原子量实际是元素的当量,算出的数值也不够准确。但他提出的原子量概念使过去模糊不清的原子观念有了比较明确的定量依据,并促进了原子量测定工作的普遍开展。

  看来,博蒙特乐于在军队工作,在军队的不同岗位上,一直工作到1839年。在这些年,他所进行的消化的化学过程实验研究,使他赢得了国际声誉,特别是在德国,他对诸如约翰斯、缪勒尔等都产生了很大影响。

  恩格斯说:“在化学中,特别是由于道尔顿发现了原子量,现已达到的各种结果都有了秩序和相对的可靠性。已经能够有系统,差不多是有计划地向还没有被征服的领域进攻,就像计划周密的围攻一个堡垒一样。”

  他在军队工作的最后一个地方是在圣·路易斯。在那里他离开军队,再度自行开业行医。1853年,他不幸坠马,严重受伤,随后感染而死亡。

  1803年10月18日,道尔顿在曼彻斯特“文学哲学学会”上,首次报告了他的化学原子论的要点:

  在19世纪以前,关于消化的研究卓有成效者,要算范赫尔蒙特。他是一个法兰德斯 (位处比利时西部法国北部交界地区)医生,医术精良,富有创见,又有实验能力,善于用实验检验和证明自己的消化理论。他的大部分著作都收集在一本命名特殊但又非常普及的书中。这本书叫《粮食的物理学》,其英译本出版于1662年。他像别的优秀科学家一样,在接受某种理论之前,总是先消除其中明显错误的东西。在范赫尔蒙特时期,绝大多数人都认为,消化就好像是由胃产生热量把吃下去的东西煮熟而已。他则用一种很简单的观察说明,就把这种普遍错误之见推翻了。他说:“在鱼的胃里并没有热量,可是消化能力并不比热血动物差。”也就是说,冷血动物和热血动物消化食物是一样好。

  1.化学元素的最终组成是看不见的、不可再分割的物质粒子,这种粒子就是原子。原子既不能被创造,又不能被消灭,在一切化学变化中保持其性质不变;

  范赫尔蒙特第一个使用碱性处方治疗消化不良,这是他考察胃酸的结果。他说:“我曾多次伸出我的舌头,让一只驯化的麻雀来吃,麻雀想尽可能把我的舌头吞下去,这样就使我的舌头尖感觉到麻雀喉咙里有强烈的酸味。由此我明白了,为什么麻雀那样贪食,为什么它消化那么快。”但是,为消化食物,只是酸还不够。他用醋不能溶解肉来证明这一点。他说,除酸外,还需要各种发酵剂。不同发酵剂对食物的作用不同。一物降一物。范赫尔蒙特关于发酵剂的概念,与现在我们所说的酵素差不多。他知道十二指肠内有碱性溶液。他不仅认为十二指肠和胃里有各种发酵剂,而且还认为各种发酵剂有各种不同的作用。每个地方都有天然酒精在燃烧,煮熟食物,滋养身体。

  2.同一元素的所有原子,在质量和性质上完全相同;不同元素的原子,在质量和性质上都不同。每种元素以其原子质量为其最基本的特征;

  在范赫尔蒙特之后,直至威廉·博蒙特这段时间内,关于消化的研究,几乎没有取得什么新进展。这反映了范赫尔蒙特关于消化概念的先进性,与生物化学中的其他落后概念大不相同。范赫尔蒙特不仅基本上确立了现代的酵素概念,而且还提出了疾病“侵害”论。他是细菌学鼻祖。他认为,由于外面的微生物侵入体内,利用人体的生命过程,使其自己得到生存和发展,并排出毒性废物伤害人体,这是一般疾病的直接原因。范赫尔蒙特历来就受到医学界的敬仰和尊重。

  3.一种元素的原子与另一种元素的原子化合时,它们之间成简单的数值比;

  1822年6月6日,军队雇佣的一名搬运工兼勤杂工,名叫阿列克赛·圣马丁,因滑膛枪走火而打伤了腹部。圣马丁是法国籍加拿大人,年仅18岁,身体很结实。他被送到外科医生博蒙特诊所时,伤势十分严重,枪弹从腹部穿入胃里,从穿孔“流出了当天早饭吃下去的东西”。想必圣马丁的身体确实很好,要不然在他伤口感染发烧时,就经受不了再“放血18~20盎斯”。据博蒙特说:“放血可以减少动脉活动,缓和病情。”

  4.有简单数值比的元素的原子结合时,原子之间就发生化合反应而结合成化合物,化合物的原子称为复杂原子。复杂原子的质量为所含各种元素原子质量的总和。同一化合物的复杂原子,其形状、质量和性质也必然相同。

  圣马丁的伤口开始逐渐痊愈,但胃里停不住东西,不得不穿紧身衣,使食物保留在胃里,不致漏出来。博蒙特在报告中说:“我用尽了一切可能的办法,花了八九个月的时间,想使伤口愈合,但都没有成功。于是我认为根本就不可能愈合了,便放弃了治疗。”经过18个月,沿伤口边缘长成了一层皱皱巴巴的外膜,塞满伤口,并稍向外突起。这样就不再需要外部加以限制约束,食物就可以停留在胃里了。这是一个“阀门”,很容易用手指压开。这时,博蒙特好像突然明白,圣马丁及其特别异样的伤口是个理想的“实验室”,可以用来进行消化的实验研究。圣马丁非常能吃苦耐劳。博蒙特说,在他利用圣马丁进行实验研究过程中,圣马丁一般很健康,积极锻炼身体,保持充沛精力。他俩结成的特殊伙伴关系,保持了长达九年之久,只间或中断,如圣马丁回加拿大去结婚和暂时更换工作等。1883年,博蒙特指出:“在最近四个月,圣马丁虽然不断接受一系列胃消化实验,但他仍保持着旺盛的精力。”

  道尔顿为了说明自己的理论,设计出一套符号,如:

  实验研究工作分两部分进行,一部分是研究各种食物在胃内的自然消化过程,称为体内实验;另一部分是将胃液抽出,研究它对各种食物的作用情况,称为试管或容器实验。圣马丁和博蒙特配合进行的全部工作,可以看成是个大实验,有系统地改变消化条件,以便发现正常消化功能的决定因素。但也可看成是一系列独立的小实验,由这些小实验的结果共同组成一个完整概念。

  氢:⊙

  抽取胃液并不费事,只要让被实验者左侧躺下,压开伤口“阀门”,通入一根橡皮管,然后转身使导管向下,胃液就会自动流出来。十二指肠液也能进行体外研究,只要用手压一压十二指肠区,油黄的胆汁就可通过导管流出。如果胃里尚残存有正在消化的食物,用手托起胃的下部,也可以挤出来。

  氮:①

  主要是研究消化的速度、温度以及有利于消化的化学条件。在实验过程中,博蒙特发现,由于胃壁受伤,稍有饮食不当,就会出现病状,他指出:

  氧:○

  “饮食不当很容易显示出胃壁受伤的病状,但很少有其他症状或特殊感觉。”圣马丁有时比较放纵自己,饮食不当,引起胃内温度少许波动。博蒙特为便于比较胃的自然消化和相应温度下的试管消化,把实验结果汇集成表。

  碳:●

  人为消化时,胃液和被消化物的比例一般按一盎斯胃液对一特拉姆被消化物计算。放试管的水槽要经常搅动,使尽可能保持温度均匀,使接近于100°F。

  水:⊙○

  在体外进行的一次典型的消化实验,其记录如下:“二月七日上午8点30分,将20喱煮熟的鳍鱼肉放入了特拉姆胃液之中浸泡;到下午1点30分,胃液中浸泡的鳕鱼肉几乎全部溶解,尚未溶解的仅4喱。溶液不透明,白色,近乎牛奶。到下午2点,鳕鱼肉全部溶解。”

  这种表示方法,实际上是化学分子式的早期形式。

  在体内也进行了上百次实验,一次典型实验的记录如下:“9点钟吃早饭,吃的食品为面包、香肠和咖啡,坚持锻炼,11点30分,胃已排空2/3,天气情况与往常相似,气温 29°F;检查时发现胃在作明显的收缩—扩张运动;12点30分,胃已全部排空。”

  道尔顿还创立了倍比定律。

  虽然这些实验的结果是直接对各种食物的消化时间和条件提供了很好的说明,但博蒙特本人及其同时代的人都认为,这些实验还与自古以来的一场重要的理论争论有关,主要争论问题就是:“胃液是否是一种化学溶剂?”有一种理论认为,在生物器官中存在着某种特殊生命力,消化过程就是靠它才有别于腐烂变质过程。而博蒙特却利用圣马丁的胃穿孔,以实验表明消化是一个独立过程。不管是在体内胃里,还是在体外的玻璃容器里,只要保证一定的胃液和相应的温度就行。博蒙特还把胃液密封保存在一个罐子里,经过数年后,再拿出来进行实验,结果表明它仍然具有消化食物的能力。所以胃液不仅是一种浸泡食物的辅助剂,而且也像范赫尔蒙特曾经说过的一样,它是具有特殊能力的消化液。

  他在分析当时已知的氮的三种氧化物——笑气(NO)、一氧化氮(N

  博蒙特在总结对病人进行多年研究的结果时说:“我想,整个实验结果可以证明,胃液不像至今某些人还以为的那样,是一种“惰性水”,其实它是一种最普通的天然溶剂,它能溶解各种食物,即使是坚硬的骨头也经不住它溶解。它在胃外具有在胃里完全一样的消化作用,这只要慢慢搅动恒温水槽,保证试管具有和胃里相应的平均温度,即大约100°F,就可以得到证明。足够的证据使我得出结论:胃液对食物的作用纯粹是一个化学变化过程”。

  2O)、二氧化氮(NO)中氧的质量百分比时发现,如果把笑气中氧的质量

  虽然是偶然的机会为博蒙特提供了一个到处活动的“实验设备”,但他仍然使实验深入细致地说明了所研究问题的各个要点。这个实验是系统地研究问题的典范。虽然实验用的只是一个人的胃,但科学家们从不怀疑博蒙特的实验结果适用于整个人类。为什么呢?因为人们并不怀疑人和人的胃是大致相同的,是可以用一个人的胃代替其他人的胃进行实验的。

  2百分比看成一个常数的话,它与一氧化氮、二氧化氮中氧的质量百分比之间存在着简单的整数比关系。

  博蒙特开始和结束的人类生理学的这一章,并没有达到尽善尽美的程度。其中包含的化学反应,在当时还不可能进行详细的研究。即使在19世纪技术范围内可能解决的,有关认识消化过程的一个重要问题,博蒙特也尚未触及到。这就是关于消化发酵剂是如何产生的?是因为食物出现在胃里而促使它流出来的吗? 1889年,巴甫洛夫终于证明胃分泌的刺激是通过神经系统进行的。他把一支狗的胃切一个口子,通入一根漏管,接到胃的入口,这样使狗吞下的食物全都能过漏管漏掉,而不进到胃里。可是事实表明,当狗开始吃东西后,胃就开始进行分泌,继续吃,就继续分泌。既然食物没有进到胃里,那么引起分泌的刺激就必然是神经系统的作用。

  1804年,道尔顿进行了沼气(甲烷CH)和油气(乙烯CH)这两种气体

  但后来又逐渐明白,这种机制还未考虑到消化道和与胃相连的其他器官的分泌。1902年,乌·姆·贝利斯和埃·赫·斯塔林首先明确指出了荷尔蒙激素的作用。他们用狗作了实验,把狗的一段小肠和消化道其他部分切开,以便对这段小肠单独作刺激实验。切开时,只切断神经系统,仍保留动脉流通。当他们把稀盐酸点滴到和消化系统保持完全联系的十二指肠时,立即出现了胰腺的分泌。当他们对切断了神经联系的一段小肠进行同样的实验时,也出现同样的反应。可是这段小肠,除了有血管与整个血液循环系统联系外,与其他部分并无联系,所以必然有一种化学物质,在肠壁受到稀盐酸刺激时便分泌出来,通过血液循环系统带到胰脏,促使胰腺分泌。他们把这种化学物质称为分泌物。后来他们还从肠壁提取出了这种物质样品,注射到血液中,这样,虽然没有稀盐酸刺激,胰腺也照样产生分泌。

  4         2的化学成份的分析实验,发现沼气中碳与氢的比例为4.3∶4,而油气中碳与氢的比例为4.3∶2,沼气中的氢含量为油气中氢含量的两倍。

  磁场概念的诞生

  倍比定律证实了道尔顿的原子论。因为,如果原子学说符合事实,原子不可分,那么元素必然以整个原子的形式相互化合,如果同一元素在不同化合物中数量不同的话,就只能成为整数比。

  罗伯特·诺尔曼大约生于1550年。关于他的早年生活和家庭境遇,情况不明,只知道他当过领航员,在海上漂泊了18~20年,那时,他可能是住在塞维尔。对于他的了解,主要是通过他的工作。他曾经在巴勒斯那里当过仪器制造工。诺尔曼是一个有经验的领航员,对当时导航仪器和技术的缺点十分清楚。罗盘是当时最重要的导航仪器,诺尔曼的发明创造也就是围绕罗盘的航海应用进行的。人们早已知道,磁针所指示的北极和实际的北极有偏差,并认为这是一种有规律性的反应,可用来确定经度。但是从多年的海上生活,特别在穆斯科维航线上的商船航行考验中,诺尔曼认识到比例偏差理论是错误的。后来他发现了磁倾角,磁针不仅指向北极,而且还有规律地向下倾斜。他把这种现象称为“下倾”。诺尔曼认为倾斜度可能与测量位置的纬度成比例,可利用这种比例关系设计一种测量仪器。结果他发明了把磁针装在水平转轴L沿垂直刻度盘转动的磁倾角测定圆,诺尔曼把关于磁倾角的发现发表在自己的著作《新引力》一书中,该书于1581年,由巴拉德在伦敦出版。

  反过来说,如果倍比定律完全正确,也就证明了原子学说的正确性。

  有人给诺尔曼献过赞美诗,他的书也就以几行磁石赞美诗开头,其形式是磁石向装饰用的宝石发出挑战:

  这样,在原子观点的启迪下,道尔顿发现并解释了倍比定律,同时倍比定律的发现又成为他确立原子论的重要基石。

  我虽是磁石但能导航,

  道尔顿做了大量的实验,进行了复杂的计算,令人信服地证明了借比定律的正确性,为原子学说提供了可靠的实验基础。

  你虽是宝石但难过印度洋;

  道尔顿认为,化学分解和化学结合是化学科学研究的中心课题。

  你若没有我帮忙,

  他说:“化学分解和化学结合只不过是把终极质点或原子彼此分开,又把它们联合起来而已。要创造一个氢原子或消灭一个氢原子,犹如向太阳系引进一颗新的或消灭一颗原有的行星一样不可能。我们所能进行的一切化学变化无非是把处于化合状态的原子分开和把分离的原子联合起来。”

  你的光彩再好,也只能在地下埋藏。

  当时的化学领域是一堆杂乱无章的观察资料和实验的配料记录,材料的堆积多于材料的整理,虽然质量守恒定律、当量定律、定比定律等化学基本定律已经发现,但还没有用统一的理论来阐明。

  除此外,书中还有其他几节这样的赞美诗。

  1807年,道尔顿的代表作《化学哲学新体系》一书问世,全面而系统地阐述了他的原子论。

  1590年出版了从德文翻译成英文的《海员的安全哨兵》,这是一本从欧洲大陆渡海的导航手册,是第一本印有木刻版海岸图的英文书,其开头也有一首诗,评论领航员的辛勤工作:

  有人说,“原子论”是古老的,不是道尔顿的首创。但是,道尔顿以前的原子理论不是用来揭示化学的奥秘,而是探秘世界本原的含糊的哲学理论。

  领航员在桅杆顶上辛勤院望,

  道尔顿说:“有些人总是把我的理论叫做假说,不过请相信我,我的原子论是真理。我所得到的全部实验结果,使我对这一点深信不疑。”

  凝视着指南针指引的前进方向;

  由于道尔顿的伟大贡献,1808年5月,他被选为曼彻斯特文学哲学学会

  这不是对世人的不朽教诲?

  “副会长”。

  这下是对发明者的最高奖赏?

  1816年,道尔顿被选为法国科学院的通讯院士,受到欧洲科学界的推崇。

  诺尔曼曾经在离伦敦不远的拉德克的一所房子住过,他在那里出售过他制造的航海仪。但详细情况无从知道,根据推测,他大约逝世于1600年。正是在这一年,吉尔伯特《论磁》一书出版,大大发展了诺尔曼的发明和发现。

  1817年,道尔顿又被选为“文学哲学学会”会长,直至逝世。

  在这里要介绍的实验是认识磁场的第一步。但是正如我们的许多研究一样,最有说服力的重要实验也只是一系列发现的一个组成部分,也只是对一组类似现象的多次考察的一次考察。所以,研究计划有可能来自于研究过程中一个意外的小小事件的结果。

  享誉欧洲乃至全世界的道尔顿却不是英国皇家学会的会员。根据惯例,皇家学会不会选任何人为会员,加入者必须自己申请。戴维建议道尔顿提出申请,道尔顿说:“对科学来说,一个科学家摆在哪儿是无关紧要的,重要的是他要对科学作出贡献。”

  诺尔曼生动地叙述了他偶然发现磁倾角的过程。早先他就注意到,即使是他自己精心设计制作的罗盘,其平滑转动的磁针也不单是指向北极,而巨还向下倾,如我们现在所说的还具有磁倾角。这种效应需要在结构上加以补偿,所以他不得不在南端放一些小铁片,消除北端的下倾,以达到平衡。但是除了这种表面现象外,他并没有考虑作进一步的深入研究。然而有一天,当他装配好一套精心制成的磁针和转轴后,他发现磁针倾斜得特别厉害。于是他开始把磁针指北一端切短,他写道:“到最后,我切得太短了,以致于毁坏了我苦心制作的磁针。因此,我生气了,决心全力以赴,研究这种效应。”

  1820年,戴维当选为皇家学会会长。因享誉世界的道尔顿竟然不是皇家学会会员,使皇家学会受到巨大压力。戴维没有经过道尔顿的同意,提议他为会员。

  第一步是要设计一个倾角测量装置,以便能够系统测量这种效应。于是他把磁针装在水平转动轴上,使其转动,使倾斜效应充分显露出来,并测出强弱程度。

  1822年,道尔顿成为英国皇家学会的会员。1826年,英国政府授予他一枚金质勋章。

  但是,这种效应是磁化还是磁石的其他作用引起的呢?显然,最大可能是磁针指北一端在磁化时从磁石上吸附了“灰尘或增重物质”。诺尔曼为这个想法,设计了一个简单的实验,把一些铁屑放在天平称盘里,用不带磁性的铅码加以平衡。然后把铁屑磁化,结果很明显,他说:“你将发现,它们并不比磁化前重。至于说,如果磁针北端从磁石上吸附了增重物质,那么南端也一样,也应该从磁石另一端吸附了增重物质,所以这不会是引起倾斜效应的原因。”这里有两个问题要解决。“用什么方法能产生这种效应?”“是哪一极(南极或北极)产生这种效应?”

  1832年,道尔顿被授予牛津大学博士学位。这是牛津大学的最高奖,那时,只有著名物理学家法拉第获得过这一殊荣。

  在诺尔曼之前,人们以为,磁针指向北极是由于有一个“吸力点”存在一端。但是,如果能证明没有吸引力或拉力存在,它吸引磁针的指北一端。但是,如果能证明那么吸力点也就随之不存在。可是磁针明明是指向一点,于是就只好把这一点叫做“吸力点”。人们可以说,这只不过是个名称问题,但名称的选取却带来一定的理论意义。如果这一点是代表吸引力原点,那么就可以预料,吸引磁针的吸引力原点和磁针之间必然存在着相应的作用力;如果这一点代表的是某种介质的结构特性,那么就没有什么吸引力存在。

  此外,道尔顿还是柏林科学院名誉院士,莫斯科科学协会会员,慕尼黑科学院名誉会员。

  为了解决这个问题,诺尔曼设计的实验十分别致,饶有情趣 (下面会看到,从现代观点看,并没有解决问题),他写道:“现在为了证明吸力点不存在,可以取二英寸多长的一小段铁丝或钢丝,穿上一小块瓶塞用软木。软木大小,估计要能使铁丝或钢丝浮在水面上,也就是要用这块软木把铁丝或钢悬浮在水中。

  道尔顿曾用两句话来概括他的成功经验,那就是:“午夜方眠,黎明即起。”

  然后把一个酒杯,或汤碗、或茶杯、或其他容器,装满清水,放在平稳而且避风的地方。接着仔细把铁丝上的软木一点一点地削去,直至能使铁丝保持在水面之下2~3英寸的位置为止,让铁丝与水面平行,两头不高不低,如同平衡的天平横梁一样。

  道尔顿的一生可以说是艰苦奋斗的一生。他性情比较孤独,沉默寡言,然而对科学一往情深,倾注了他的满腔热情和毕生心血。他没有结婚,过着独身生活,原因是“没有时间交女友,谈爱情”。

  然后再把铁丝从水中拿出来,不必去掉软木,将其一端接触磁石的南极,另一端接触磁石的北极,接着再重新放入水中,于是你将立刻看到,它自动绕其中心旋转,表现出前面所说的倾斜效应,悬浮在水中,不下沉到水底。按理说,如果存在着吸引力,那么因为水的下部比上部离吸引力原点要近,磁针就应该在吸引力作用下沉到水底。”

  每天清晨,道尔顿就起床了,第一件事是到实验室里,扫地抹桌生炉子,准备好一天的实验工作。早饭后,他就走进实验室,开始了紧张的研究工作。在实验室里,他往往一呆就是一整天,常常忘了吃中饭。夜幕降临了,他才依依不舍地去吃晚饭。然后回到房间读书,直到深更半夜。

  这样看来,地球或者说天体并没有从自己的北极散发出吸引力来吸引磁针北端或整个磁针。诺尔曼认为,应该把磁针指北的能力完全归于“磁石及磁石所赋予磁针的特性”。诺尔曼和吉尔伯特都没有想到的另一种假说,即认为存在着吸引力和排斥力,其强弱随着原点的距离变化而变化;磁针为了保持和地球两极发出的吸引力和排斥力的平衡,就不得不指向地球的北极。这种更复杂的力学理论,大约在250年以后才发现,并成为安培和法拉第的争论焦点。作为文艺复兴时期的两个磁学学者,诺尔曼和吉尔伯特,幸好没有想到这种磁学理论。

  他坚持这种方式生活和工作,几十年如一日,是非常不容易的。

  诺尔曼及其稍后的吉尔伯特都应用力场的发现来解释说明地磁问题。力场概念已成为现代物理学关于电、电磁和引力的基本概念。

  实验用的仪器大多数是道尔顿亲手制作的,实验材料也都是他搜集的不值钱的东西。有一件自制的气压计,度盘是用纸制成的,刻度是用笔划上去的,但却精巧实用。

  诺尔曼曾说:“我的意见是,如果能用一种方法看见磁力特性的话,它一定是围绕磁石的一个相当大的球形体,其死点在磁石的中心,这也是这种特性的中心。”

  由此可见,道尔顿一生在极其艰苦的条件下坚持科学研究是多么地努力,并取得了卓越的成就,更是难能可贵。

  虽然这种意见具有先见之明,但很不全面。诺尔曼把磁场特性仅归属于磁石,而对地球却只字未提。吉尔伯特完成了这一步,他在1600年出版的《论磁》一书中,重申诺尔曼实验,证明磁针指北或倾斜都不能用引力来解释(他就是这样认为的),但他指出,只是磁石和磁针具有磁场特性还不够,地球也是一个磁体,也具有磁场,甚至可能是最终磁场。吉尔伯特把磁场特性称为球形特性或磁力球。他从诺尔曼实验得出进一步结论说:“再则,方向也不决定于吸引力,而决定于地球整个力的分布”,是一种球形特性使磁针处于特定的方向。

  道尔顿在科学上的最大贡献是创立了原子论,抓住了化学学科的核心和最本质的问题,用原子的化合和分解说明了各种现象及化学定律间的内在联系,成为物质结构理论的基础。

  吉尔伯特用磁石做成地球模型,并利用这种模型表明磁倾角随纬度变化而变化。这种导航思想比诺尔曼导航思想更正确更先进,因为诺尔曼没有用地球磁场来说明问题。

  原子论是17世纪末和18世纪初在化学研究中具有划时代意义的成果,对物理学和化学的发展产生了深远的影响。

  下面就是吉尔伯特在磁场概念诞生时所说的原话:“磁体的球形特性就是磁体的磁力倾泻出磁体,在表面上扩散,隆起成球形。……我们不是说这种磁力形式或磁力球存在于空气、水或其他非磁性介质中,……磁体通过磁力球影响其他磁体,甚至像固体磁石一样激发其他磁体的磁性。”

  道尔顿是世界的骄傲,更是曼彻斯特的骄傲,曼彻斯特人为了表达对道尔顿的崇高敬意,在市政府大厅里竖立了道尔顿的半身雕像,推选他为曼彻斯特市的荣誉市民。

  还有两步尚待完成,但在以后的150年中,比较忽略了磁和电的研究。怎样实现诺尔曼的梦想,让人能看见磁力和磁力球呢?现在任何一个小学生都知道,只要把一些铁屑撒在受磁体作用的纸上,就会立刻看到在磁体上面呈现出球形磁力线。这种方法和对磁力线特性的进一步研究应功于法拉第。

  1844年7月26日晚,78岁高龄的道尔顿做了最后一次气象记录,这时时间正好是9点差一刻。57年来,他每晚都是在这个时候记录下当天的气象数据。

  诺尔曼和吉尔伯特两人都认为磁场与物质无关。但法拉第却成功地用实验证明了这样的事实:转动磁铁棒能产生感应电流。这只要磁铁棒转动,而与其相关的磁场不动。因为电流只有在导体与磁力线作相对运动,即我们现在说的“切割”磁力线时,才能产生。所以,即使磁铁棒和其周围存在着另外的磁场,如果二者相对静止,也不会产生感应电流。

  可是,今天晚上,他的手颤抖着,不听使唤,道尔顿感到已近生命垂危,但是他仍坚强地拿起笔,记录下气压计和温度计的读数,并在最后一格记下了“微雨”两字。他站起身来,忽然发现日期没签上,便又坐了下去……

  同时,法拉第还证明,只是接通或关掉电磁铁,也会产生感应电流。好像是导线通电时,所产生的磁场就传播出来,而关掉电流时,它就收了回去。法拉第通过探测电磁体附近导体产生的感应电流,揭示出这种效应。没有电流,即使有时有电流,在导体中也不会产生感应电流。而每当通电和关电时,导体中就出现感应电流。这些以及其他一些效应使法拉第,也使其他的人深信不疑,磁场是实际存在的。可能只是由于人们的感觉能力限制,使人们不能像感觉土地和水那样直接感觉磁场。

  几个小时后,这位伟大的科学家已经静静地安息了。

  “酒杯”实验充满着实验理论。西奥多里克和亚里斯多德的观察实验,是直接用观察实验结果来证实自己的研究设想;而诺尔曼实验则依靠更复杂的逻辑,他用实验结果来驳斥原有的引力假说,同时说明新产生的磁场概念。在这个实验中,除了实验科学的实证法或归纳法外,还增加了第二第三方面,即反证法和说明解释法。同时,由于用磁场概念说明的这种效应,还可以用更成熟的引力理论来解释,这就会提醒人们注意,不要以为每个有效的说明就一定是对某一现象的原因的正确认识,不然的话,就有犯错误的危险。

  8月12日,100多辆马车护送着道尔顿的灵枢,曼彻斯特人排成长长的送葬队伍,在哀乐的肃穆声中慢慢地向阿尔德维克墓地移动。

  植物的液体循环

  1962年,曼彻斯特市教育委员会将市立大学工学院命名为道尔顿工学院,并把道尔顿雕像从市政大厅移至学院新落成的现代化教学楼主楼前。道尔顿双眼凝视着前方,好像是在展望未来的科学发展。

  1677年斯蒂芬·赫尔斯出生在肯特郡别克斯波恩的一个富裕家庭。1697年他进入剑桥本特学院读书。当时在剑桥能够学到的专业多种多样,他和他的朋友威廉·斯塔克利一起对自然史和生物学进行了广泛学习,同时对气体和液体的流体力学也很感兴趣。从有关资料看来,他的科学活动主要是研究气体和液体的流体力学在生命过程中的作用。

  分子学说的证明

  赫尔斯曾担任剑桥本特学院的学院委员,一直到1709年,在那以后他成为特丁顿的牧师,并以此渡过了他的余生。虽然确认是哈维发现了人和动物的血液循环,但他不过是对有关假说提供了必要的理论证明。而赫尔斯用马、狗和青蛙长时间进行了一系列残酷的实验,考察了血管系统各方面的情况,绘制出血管系统的图表,还考察了各部分血液的特定压力以及流动的流体力学条件。他的工作明确地解决了哈维遗留的许多重大问题,在当时就引起了一般公众的注意。托马斯·特文宁在他的一首地方记事诗《船》里就曾写道:

  道尔顿的原子论揭示了一切化学现象不过是原子的运动这一化学本质,真正地奠定了化学的科学基础。

  绿色的特丁顿清静明朗,

  但他的原子论有两个缺陷,一是否定了物质分割的不可穷尽性,认为原子是不可分的最小的物质微粒;二是忽略了原子和分子的区别,把化合物视为复杂原子。

  是从事科学研究的好地方;

  道尔顿在后期固步自封,阻碍了原子论的进一步发展。

  优秀牧师赫尔斯在这里,

  首先创立分子论的是意大利化学家阿佛加德罗。他在1811年发表了一篇题为《原子相对质量测定方法及原子进人化合物时数目比例的确定》的论文,首先提出了分子的概念。

  解剖过狗、马和青蛙,

  他认为原子是参加化学反应的最小质点,分子是保持物质一定特性的最小单位,分子是由原子组成的。单质分子是由相同元素的原子组成,而化合物分子是由不同元素的原子组成的。在化学变化中,不同物质的分于间各原子重新组合。他还指出,一切气体在同温同压下,相同的体积中含有相等数目的分子。

  还用天平称过水汽的重量。

  阿佛加德罗的分子学说是正确的,但是人微言轻,他的理论没有得到化学界的重视,被冷落了大约半个世纪。原因一是阿佛加德罗拿不出充分的实验证据,二是当时化学界的权威如道尔顿等人否定他的理论。

  他以探索大自然奥秘为快乐,

  直到 1860年,意大利化学家坎尼查罗调和了原子学说和分子学说的分歧,使原子一分子论成为一个完整的理论体系。

  也不时为此而烦恼、 徨。

  1860年9月,在德国举行的国际化学会议上,坎尼查罗散发出论证分子学说的小册子《化学哲理课程大纲》,强调把分子和原子这两个概念区别开来。他指出,只要把原子和分子区分开来,不固守陈见,就能发现化合物的分子含有不同种类和数目的原子,单质分子中只含有一种原子。

  虽然当时已经开始了反对残害运动的动物,但这个运动的主要人物阿列克山得·波普,赫尔斯的邻居,却成了赫尔斯的亲密朋友。

  坎尼查罗的论点很快被人们接受,原子一分子论的理论体系得到了完善。

  大约在1724年,赫尔斯开始进行系统研究,勾画出了植物生理学的基本轮廓。他不仅进行了植物体液循环的研究,而且更重要的是他还研究了植物和其所处环境之间的交换和影响。他说明了被植物根部吸收的水分是怎样输送到叶子,又怎样散发掉的。他对植物的生长过程也感兴趣,并说明了植物各部分是怎样按比例生长的。在赫尔斯还未从事研究工作的前几年,梅奥曾说明过呼吸、燃烧和空气之间的关系,赫尔斯对这个问题作了进一步研究。

  电化学的创立

  1722年,赫尔斯被选为皇家学会会员,1727年被选为议会议员,成为一个显赫人物,当了乔治亚殖民区的托管官员,是公共卫生监督委员会的常务委员,负责检查诸如皇家海军的卫生状况以及施行所谓特别疗法的效果。他对空气的兴趣导致提倡通风,对空气不流通的狭小空间,如舰上住室、牢房、医院病房等进行通风,增加新鲜空气,曾是他一时的急务。他发明了各种通风装置,其中大多数都被采用。他逝世于1761年,这时他仍然是特丁顿的牧师。

  在道尔顿原子论发表后,理论化学领域除了分子论的提出之外,英国化学家戴维还提出了物质结构的二元学说,同时他还在实验化学领域发现了许多新的化学元素,推动了化学的发展。

  古代植物学主要受到亚里斯多德的学生西奥菲拉底著作的支配和影响。绝大部分是记述和分类工作。根据植物的一般形状,把它们分为诸如草本植物、灌木和树木,或者按其药用性质进行分类。这种分类一直沿用到整个中世纪,事实证明是实际可行的。西奥菲拉底对植物和环境的关系也进行了某些研究,并按习性进行了分类,但在这方面大为逊色,只能起到寻找特殊草药的指南作用。就我们所知,在古代并没有进行植物生理学和解剖学方面的研究。

  1807年的一天,伯纳德兴奋的走进实验室,高声说道:“祝贺您,戴维先生。”

  17世纪中期,显微镜的发展才为现代基础研究工作提供了可能性。罗伯特·虎克,就是为波义耳当过助手的那个虎克,对植物进行了仔细的显微镜观察,他首先认识到细胞是生物的最基本单位。内赫米亚·格鲁又把这种研究工作大大推进了一步,对植物进行了详细解剖,画出了精制的解剖图。

  正在忙于实验的戴维满腹狐疑,用一只眼睛不解地看着同事。

  用显微镜观察的最重要发现是发现植物具有网状管路系统,从根部到茎干、枝叶都有管路相通,其中有些充满液体,有些充满空气。鉴于这种事实,格鲁开始想到在植物体内可能有类似动物体内的循环系统。随着这一想法产生了许多问题,经常在他脑海里跳跃闪烁。例如,在植物体内是不是也有一个像动物体内那样的封闭循环系统呢?是什么力量促使植物液流动的呢?植物各部分的生命机能和这个循环系统有什么关系呢?而赫尔斯就是为了回答这些问题而进行了一系列重大实验。

  “法国拿破仑皇帝发布一项命令,授予英国化学家汉佛利·戴维勋章一枚。”

  大约在1670年,马尔皮格赫已经说明了植物生命过程的基本理论。他抓住了两个要点,其一就是说从树根到树叶一定有一个向上的液体运动,把水分输送到全身。马尔皮格赫认为构成植物体的最基本元素是在树叶中制成的,因此,他的第二个要点就是在植物体内一定有一个向下的运动,把营养物质输送到各个需要的地方。他也领会到这一过程会导致营养物质的储备。由于许多植物是把营养物质储备在根部相连的块茎里,所以营养循环一定是回到根部,即水分循环的出发处。所有这些都只是一种推想,还需要实验证明。做出这样的证明也就是赫尔斯的贡献。

  “为什么?”

  这里介绍的主要实验是一系列有关的辅助实验发展的顶点。首先需要弄清楚,水分从根部输送到叶子,是根部产生的压力输送呢?还是叶子产生的抽吸作用呢?

  “表彰你在电学及化学方面的功勋。”

  赫尔斯说道:“7月27日(1716年),我把一段苹果树枝绑在一根管于的一端,从另一端装满水,然后把整个树枝浸入容器的水中。”

  “确实是很高的荣誉。”

  “开始两小时,管子里的水下降了6英寸 (水充入树枝的输液管路)。当天晚上又下降了6英寸,……到第三天晨,我把树枝从水中取出,连同管

  “可是指定授奖仪式在巴黎举行,而我们正在和法国打仗,怎么能去敌国受勋呢?”

  1子一起挂在空气中,在12小时之内,它吸收了27     英寸的水分。”于是赫

  “我不同意您的看法,”戴维严肃地说:“我是为科学,为整个人类而工作的。如果说科学家要进行斗争,那么他只能为夺取某种信念的胜利而斗争,为坚持真理而斗争。”

  2尔斯结论说:实验表明树枝有很大的呼吸能力,植物液体循环的原动力是叶面水分蒸发,而不是根部水分的压力。但是,实验并没有说明这一过程具体是怎样发生的。

  “科学是不分国界的,我决定去法国。”

  从叶面蒸发的是水吗?把树枝装入密封容器中,收集树枝散发的液体,可以证明,其绝大部分是水。

  富丽堂皇的巴黎凡尔赛宫,法国科学院在这里举行了隆重的授奖仪式,授予为科学做出杰出贡献的戴维一枚勋章和3000法郎奖金。

  好,现在该谈主要实验了,即树液是怎样运动的?是类似动物的血液循环呢?还是像潮汐一样起落呢?赫尔斯通过两个完美的实验,一下子就解决了这个问题。循环论者曾假设说,树液是通过树干内部上升,而通过树于外层下降。

  戴维,于1778年10月27日生于英国一个木器雕刻匠的家里,幼年时期受过一定的教育,在文学方面表现出才能,不久父亲病故,被迫辍学。

  赫尔斯在8月20日(1716年)说道:“在下午1点,我将一段苹果树枝,用弯铅管固定在管子上,但在这之先,我已把某一处的树皮和上一年轮的木质按环状切去了3英寸长,然后将管子装满水,管子长22英尺,直径为1/2英寸。另外,在树枝下部把树皮和上一年轮的木质切去,切成一个12英寸长的缺口。从这个缺口可以看到水抽吸得很畅通,其速度为1/2英寸/分。半小时后,我就清楚看到缺口的下部比先前湿了,而上部仍然是干的。”

  17岁时,戴维到一家药店当学徒,从医生和药剂师那里接触了化学。从此,戴维迷上了一些简单的化学实验。

  所以,赫尔斯继续说道:“水分上升一定是通里层木质,因为上一年轮木质已被环切掉了三寸长,水分已不可能通过它上升;另外,如果树液是通过上一年轮木质层及其与树皮之间的通道自然下降的话 (有许多人这样认为),那末切口的上部就应该湿润。但正好相反,湿润的是下部而不是上部。”这样看来,树液必定是通过树干内层上升,同时也通过上一年轮木质层和树皮上升,切口下部湿润就是证明。所以,并不存在树液循环,至少并不存在严格意义上的完全的循环。如果存在着循环,那除非是某一部分某一方向的运动已被系统中另一部分另一方向的相对运动所补偿掉了。

  1798年,戴维被聘到克里夫顿气体研究所当医药化学家托马斯的助手。

  这个结论还有更强有力的进一步证明,就是看植物一天吸收和蒸发多少水分。赫尔斯表明,按体积作相对比较,向日葵散发水分比人快17倍。如果存在循环的话,那就一定非常快。但并没有这种快速运动的任何迹象。

  在这里,戴维和托马斯共同发现了“笑气”,即一氧化二氮。

  但是,正如许多天才实验家证明,“确实有树液从顶部回到根部”。赫尔斯也发现了这一现象。但这并不证明是循环运动,而倒更证明是潮汐起落。

  一天向来幽静的克里夫顿实验室,突然传来“哈哈、哈哈哈、……”的阵阵狂笑,隔壁的实验员进来一看,戴维和托马斯不知什么原因而笑个不停。

  在赫尔斯进行了一系列 (上面只介绍了其中个别精彩片段)独具匠心的实验之后,后继者在长达100年之久,对植物生理学几乎没有增添什么新内容。这样说完全不过分。当然这一时期,也有某些贡献。虽然赫尔斯实验几乎完全澄清了植物水分系统的问题,但还遗留下植物和大气交换问题。梅奥

  “你们发神经病了!”

  (第一个明确区分大气气体的科学家)和赫尔斯都怀疑,植物是不是也从大气中吸取一定的营养。赫尔斯早就把植物的气体交换区别为营养交换和呼吸交换。但是他没有正确理解梅奥所发现的空气中的一个成分,即氧气,被生命过程吸收了。赫尔斯以为呼吸和燃烧过的空气,之所以减少了五分之一的体积,是因为被呼吸和燃烧过的空气失去了相应的弹性,而不是相应的物质被吸收了。由于赫尔斯犯了这种错误,所以他的理论未能正确区别气体的营养交换和呼吸交换。到1779年,德意志医生英根豪斯明确指出,植物的生命过程中有两个截然不同的呼吸循环:一个和动物的呼吸循环一样,吸人氧气,排出二氧化碳;另一个则把二氧化碳当作气体食物吸入,而排出氧气。到了大约1840年,空气气体化学已十分明确地区分出氧、氮和二氧化碳,对它们的化学性质也全部进行了研究。1840年走完了最后一步,鲍森考尔特表明了植物不是从空气中,而是从它赖以生长的土壤中获取氮养分。

  当实验员把他们扶出室外后,渐渐地,他们恢复了平静。

  印遗的条件

  “你那瓶气体被我碰倒打碎后,我就不由自主地笑了起来,现在只感到头疼,戴维,你呢?”

  康拉德生于1903年11月7日,他是国际上有名的整形外科医生阿道夫·洛伦茨的二儿子。阿道夫·洛伦茨发明了有效治疗先天性股骨脱臼的治疗方法,通过国际行医,他变得很富有。康拉德·洛伦茨的童年大部分时间是在阿登堡的农村渡过的。那个地方在多瑙河畔,离维也纳不远,有他父亲建造的宽敞房屋。像他那样一个小孩,拥有各种动物:鸭子呀,鱼呀,狗呀等等。特别是在阁楼上养的一群穴鸟,其飞翔生活为他的第一篇科学论文提供了原始材料。他11岁时进入了维也纳的斯科登中学。第一次世界大战期间,城乡交通越来越困难,洛伦茨一家只好搬到城里宿舍居住。

  “我也不知为什么跟着笑了起来,看来是那瓶气体捣的鬼。”

  阿道夫·洛伦茨很想让康拉德继承他的医道,所以在1922年就把康拉德送到纽约的哥伦比亚大学医学预科班学习。但小洛伦茨不喜欢呆在那儿,不久就返回家了。后来他进入了维也纳大学医学系学解剖学,但他不是为了行医作准备,而是作为理论科学学习。这段时间他受到亲密朋友本纳德·赫尔曼的很大影响,使他对自然史发生了兴趣。1927年,洛伦茨发表了自己的第一篇学术论文《对穴鸟的观察》。一年后,他获得了医学博士学位。

  这就是戴维和托马斯发现的一种奇怪的气体——一氧化二氮。紧接着,戴维反复研究这种气体,发现它具有麻醉作用,能令人狂笑不止。从此,人们称这种气体为“笑气”,戴维也成为“笑气专家”。

  洛伦茨不去行医当医生,而到解剖系当了助教。这时,他认识了第一个系统研究天然动物行为的学者奥斯加尔·海因罗茨,有许多资料说明,洛伦茨向他学到了许多东西。1933年,洛伦茨获得了动物学博土学位,随即便转入动物学系工作。他的主要科学工作是在1926~1938年间完成的。虽然后来他还在积极从事研究工作,但他的重大发现却是在那12年里做出的。

  戴维发现笑气后,顿时闻名欧洲。

  洛伦茨对多瑙河一向情深,极感兴趣。1930年他专门买了一只船,以便练习航行,不怕困难地坚持数年努力,终于通过了在多瑞河上的船泊导航考试。他是在1930年和他从小就认识的玛加莱西·格布哈德结婚的。

  1801年,戴维被聘为伦敦皇家学院教授,讲授应用化学和农业化学。戴维年青有为,讲课极为幽默生动,吸引了大批学生。

  第二次世界大战完全打断了他的科学研究工作。他的传记作者阿列克·尼斯贝特说,他在政治上比较幼稚,深深卷入了战争,还不认识纳粹制度的本性。由于他在医学上的专长,被抽调作了军医。1941年开始在波兰服役,然后从那里调往东线,最后在1944年被苏军俘获。他过了三年的俘虏生活,大部时间住在前苏联的亚美尼亚。

  戴维同时还进行了电化学的研究,在伏打电池的基础上,对能够组成电池的物质进行了广泛的实验。1806年,他在《论电的某些化学作用》中,探索了电解法在化学实验中的某些作用。

  战后,由于占领国的强力管制,德国和奥地利的科学研究都受到严重阻碍。一直到1948年,在哥廷根才成立了马克斯·普朗克研究所,负责管理该研究所的科学协会大力支持了洛伦茨的工作。洛伦茨利用他在阿登堡的家作为附属研究所和野外工作站。1951年,在巴伦·冯·罗伯格的赞助下,作为专门研究动物生态学的马克斯·普朗克研究所在巴德尔建立了,以后迁到西维森。1962年,洛伦茨担任了该所所长。

  1807年,戴维用250对锌片和铜片组成的强大电堆,成功地实现了对草木灰 (碳酸钾)和苏打(碳酸钠)的电解,在阳极上放出氧气,在阴极上析出金属钾和钠,从而发现了两种重要的新金属元素:钾、钠。

  1974年,洛伦茨和尼科。廷伯根以及奥托·冯·弗里希共同获得了诺贝尔奖金。

  在电化学的研究中,戴维提出了二元论的接触学说。

  很久以来,在天然环境中过着原始生活的野生动物就是博物学家们的研究对象,不过一般是进行业余研究。直到达尔文才为天然动物的习性研究理出了科学的头绪。他抓住了动物生态学的中心内容,应把动物的习性看成是动物适应环境的一个方面,它和动物的身体构造或生理过程同样重要。他并得出了结论:动物的习性必然被遗传和被自然选择。达尔文以后有些停滞不前。后来在美国又重新引起科学家们的兴趣。通过长期熟悉动物生活的自然环境,就能够理解动物。第一个提出这种思想的人就是美国生物学家魏特曼。他主张用达尔文学说解释动物的习性。他和他的学生们,其中包括有影响的威勒,对各类动物进行了很好研究。洛伦茨自己说,他的最大成就来自魏特曼和他自己的导师奥斯加尔·海因罗茨。

  他认为,物质由带阴电的部分和带阳电的部分组成,把这两部分结合在一起的化学亲和力,就是它们之间的静电引力。因此,化学变化的本质是电变化。

  但是达尔文的最初察觉却被大多数心理学家忽视了。某些动物,具体如灵长类动物和老鼠,曾被用来作为实验对象,把它们关在笼子里,试图发现其行为基本特点和刺檄引起的条件反射过程,但毫无结果,因为整个实验计划的设计是错误的。可是错误还得到维护,说什么只有脱离开自然环境的研究才可能取得进展。

  当不同的原子相互接触时,就产生了感应而分别带上了相反的电荷,其强弱随元素而不同,在静电引力作用下将原子结合在一起。

  把动物的习性研究由人为条件下转到天然环境中进行自然观察,即开创动物学的新学科动物生态学,是从德国开始的。然而很快就传到了英国,与英国传统的博物学和野生动物习性观察结合起来。但这一领域的中心人物却仍然是德国的洛伦茨。

  这样,戴维对物质结构理论进行了探讨。

  如果达尔文是正确的话,那么就应该有被自然选择的习性,即严密准确并适于物种繁衍的行为链。最初的动物生态学就是研究区分这些习性,证明习性不是学会的,找出具体方法使某一习性结合另一习性以利于繁衍。这可以用小鸟出世后从窝里清除蛋壳的习性的例子来说明。新打开的蛋壳洁白明亮,很容易吸引侵害者到来。把窝筑在易于暴露的地方的多数鸟类,都有清除蛋壳的习性;而把窝筑在隐蔽不易受到侵害的地方的鸟类,则没有这种习性的神经机能的遗传。

  戴维用电解法发现了钾和钠这两种元素后,继续用电解法寻找新元素。他对生石灰、重晶石等进行电解,但是没有成功。

  为了使一种习性起作用,单是通过行动后果而操纵反射链运动的遗传神经机能还不够,还必须要有相应的刺激来触发。问题在于:认识相应刺激的能力和受到刺激后习性就起作用的能力是否是一道遗传呢?结果证明,二者是无关的,“只是有时候才有关”。许多鸟类的幼雏,在它们成长过程中如果不让接触其同类,它们也就不认识其同类。

  一天,戴维专心地忙于实验,当别人离开实验室去吃饭时,他仍然不停地忙着。

  长嘴涉水鸟的幼雏孵出来时,发育阶段较高,具有“先天系统”,能认识鸟妈妈,只要鸟妈妈一出现在面前,它们就表现出相应的行为,例如伸嘴去呷接食物;不需要任何学习和训练,只要一见到人就会自己逃跑。实验证明,每一个成鸟的特点很重要,通过分别模拟每个成鸟的特点幼鸟就会作出相应反应,证明它们能辨认出来。这种鸟以及与这种相类似的鸟,其认识习性相关的事物的能力和表现出相应习性的能力,一定是先天的或遗传的。

  突然,实验室里响起爆炸声。

  然而大多数鸟类的发展情况与此不同。在动物生态学界,灰雁的事例是很有名的,它生动说明另一种发展类型。如果幼灰雁完全由人工喂养,那么它们的行为习性就倾向于人。它们似乎是把在它们发展过程中某一适当时机发生在它们面前的无论是什么东西就作为原始对象印遗下来。首先对这种印遗现象做出观察记录的是奥斯加尔·海因罗茨。他注意到,虽然小鸭刚孵出时见人就逃跑躲藏,但小鹅却呆呆地盯着人不动,即使人去碰它也不反抗。这样由人工喂养的幼鹅并不表现出认识成鹅是其同类的倾向,而把人当做其父母。有如海因罗茨指出,刚刚破壳而出的小鹅,第一次睁开眼睛“带着高度准确的印遗事物的注意力”,印遗下第一眼见到的东西,作为其父母的形象。

  人们迅速赶来,只见戴维躺在地上,一只手捂住满是鲜血的面孔,不省人事。

  洛伦茨的贡献是对印遗现象发生的条件进行了系统的实验考察。他最初的发现就使印遗的基本概念变得鲜明突出了。通过几种鸟进行比较,结果证明:“某一种事物只能在鸟的生命进程中某一相当固定时期才能被印遗”。

  戴维被送进医院,悲伤地躺在床上,虽然伤势并不太重,但是他从此只能用一只左眼观看这个美好的世界了。

  “印遗一经发生,并且印遗时期(其长短随种类不同而异)已过去,相应的反应就不会遗忘”。从而得出两个非常重要的理论结论:与一般动物学设想相反,动物必定有一种先天趋势以填补其本能结构上的空缺 (指引导某一行为的相应事物);但更为重要的是不应把印遗看成是一种学习,否则就大错特错了。学习事物的特点是可能被遗忘或者记错,与其他事物相混淆,而作为动物本能行为目标,一旦印遗以后,就再也不会改变其相应的行为,这种相应的行为方式也就成为其生命要求的一部分,如食来就张口。

  尽管只是一只眼睛,一般人可能承受不了这个打击,但戴维表现出了一个科学家的刚毅和乐观精神。他说:“幸好只瞎了一只眼睛,但我还有另一只眼睛能看见东西,继续进行研究,这就足够了。”

  这里要介绍的主要实验是想确定动物的所有本能习性是仅仅通过一种事物一次就印遗的呢?还是每一个习性各有相应的印遗时机呢?如果是后者,那么每个习性就分别有相应的客观对象,种类不同,客观对象也不同,只有在适当的时机,相应的对象出现在周围,才能发生印遗现象。实验研究的对象是洛伦茨在阿登堡家中养的一大群穴鸟的一只幼雏。这只幼雏从小就与其他穴鸟分开,单独由人工喂养。这样它的本能习性要么是先天的,要么就是人使其印遗下来的。但有两种习性例外,一种就是成群飞翔的习性,由冠头乌鸦使其印遗的。当这只幼穴鸟处于能印遗成群飞行时,第一次让它认识相应类型的飞鸟,使其能印遗了成群飞行。即使它进一步成长并生活在穴鸟之中,它还是每天要飞到乌鸦群里去,同乌鸦一起度过它的时光。这一点至少可以肯定一种习性所相应的印遗对象和印遗时机是不相干的。但是当这只穴鸟处于印遗生殖习性时期时,让它生活在其他穴鸟之中,它就和其他穴鸟交配。这样,这只穴鸟是和其他穴鸟一起交配,但和乌鸦在一起飞行,和人在一起吃食。穴鸟必须在自己生命进程的不同时期才能印遗生殖习性和飞行习性。一般穴鸟飞行、交配和吃食都是和其他穴鸟在一起,但这个实验中的穴鸟却提供,其各主要生活习性是通过不同对象在不同时间印遗下来的。这说明,必然有一个时间顺序,在相应的时间发生相应的印遗。但是这里还遗留下一个关于照料幼雏的习性问题。被用来进行实验的这只穴鸟,当它第一次碰到 (洛伦茨说是突然碰到)一只刚长出羽毛的幼穴鸟时,它就收养了这只幼穴鸟,并完全按照其同类具有的特定方式,带领和喂养。要知道,这是它第一次看到幼穴鸟,在这之先没有发生类似的印遗现象。所以可以得出结论:穴鸟不仅具有需要一定对象在一定时机完成印遗的习性,而且也具有先天遗传下来的习性。

  1808年,戴维成功地对生石灰、重晶石、苦土和锶矿石进行了电解,发现了钙、钡、镁、锶4种新金属元素。

  最后一个重要问题,如果一只幼鸟被某一适当的对象完成了某一习性的印遗,这某一适当对象可以说是其同类的代表,那么该幼鸟铭记住的是一类呢?还是单独一个呢?答案有点复杂。洛伦茨发现,虽然一只鸟已把某一个人印遗为自己的代理父母,但随其性本能的发育,并继续和人们生活在一起,它也会把其他人认作父母。看来控制印遗过程的天然机制比较复杂。最初认识父母,姑且这么说,选择的是在周围最先看到的东西,不管是人或是鸟。但在后来收留配偶时,则似乎只印遗一个固定的具体形象。

  1809年,戴维又锦上添花地析出了硼。

  和洛伦茨、弗里希一起获得诺贝尔奖金的廷伯根对各种动物的行为方式,进行了进一步的研究,而且在行为的神经心理学方面比洛伦茨作得更深入细致。廷伯根的一个较早的学生麦克法兰把这种研究更向前推进了一步,他用系统理论的概念和方法说明了各种行为方式的神经机制。但正如廷柏根坚持的一样,行为方式的保持一定符合达尔文主义,即是说,器官的行为适应环境,利于繁衍。

  从此,戴维的电解法受到举世瞩目,创立了物理化学中的电化学。

  政治偏见深深埋藏于行为习性是由学习而来的主张之中。这种心照不宣的信念统治着早期对动物习性的实验工作,难以摆脱。但英国和欧洲传统的动物生态学家一直坚持天然习性假说。这不仅导致理论改良,而且也促使为检验理论而进行广泛的观察实验。似乎没有多大疑问,可以说,在这期间,洛伦茨和廷伯根的基本思想经受住了时间的考验。

  戴维在1808年还研究了元素氯。实验证明氢中不含有氧,它是一个独立的元素,确证酸的主要成分是氢。从而推翻了拉瓦锡“一切酸中都含氧”的错误结论,认为“一切酸中都含氢”。

  近年来,到动物栖息地去理解动物生活这样一种研究方法,已扩展到灵长类动物的研究,具体说就是对黑猩猩的研究。另外,也对狮子、大猩猩和其他大型动物进行了详细研究。

  戴维对科学做出了杰出的贡献。在1808年,重视科学的拿破仑,不顾英法处于战争中的敌对局面,授予他科学勋章。

  随着分析了解动物生活的科学的发展进步,专门描写人和动物生活异同的附属文学也繁荣起来。大多数这类半普及性的著作都倾向于人也是按先天的时间顺序来表露其各种习性的,甚至提出说,也可以用适当的对象让人类婴儿形成某种印遗。动物生态学普及推广家,如罗伯特·阿德里,所提出的论据一般都是从比较人和动物行为某些方面的相似性得出的推测。这些推测已被建立在对人类遥远过去想象描写的基础之上,认为人类现在的习性就是从那遥远的过去流传下来的。

  贝采利乌斯的贡献

  并不是落伦茨发现了印遗现象,但他的实验观察对两个对立的假说作出了判断,结论就是:各种不同习性相应对象的印遗过程只能在适当的时间里发生。

  道尔顿的原子论,促进了对化学物质结构的研究。戴维在研究中用电解法发现了7种新元素,而瑞典的“化学大师”贝采利乌斯又发现了很多化学元素。

  改进化学测量

  贝采利乌斯系统地发展了道尔顿的原子论,非常准确地测定了大约 50种原子的原子量;创立了以拉丁名称的开头字母作为元素符号,意义重大;提出了“有机化学”的概念,奠定了有机化学的基础。

  琼斯·雅各布·柏济力阿斯于1779年出生在瑞典的奥斯特戈特兰。他的父亲是一位教师,还在柏济力阿斯小时候就死了。柏济力阿斯的母亲改嫁,但不久也死了。柏济力阿斯只得由他母亲的姐姐弗罗拉大姨收养。当她和一个再婚的男人结婚后,这孩子就不受欢迎了,只好把他送给一个叔叔去抚养。柏济力阿斯12岁时被送到林可宾念书,在那里他得到私人辅导,对他有极大的帮助,这时他对博物学产生了极大兴趣。但他在学校学习有许多困难,他本来应该是一个奋发向上的学生,但他并没有这样做。可能是根据校方的意思,他不得不离开了学校。在1796年,他在乌普萨拉开始学医。他很幸运,跟一位优秀教师和著名的化学家 (他发现了钛)埃克布格学了一段时间的化学。

  1779年,贝采利乌斯出生在瑞典南部的一个小山村,不久,父亲去世,为了生活,母亲被迫领着他改嫁。

  他的叔叔帮助他解决了经济困难,让他跟一个药剂师当学徒,后来又跟一个矿泉疗养院的医生当学徒。在这段时间,他学习了定量分析技术,因为需要知道矿泉水中所含的矿物成分,以便登广告,宣传矿泉治疗的奥妙。这时他对医学特别感兴趣,他在这段时间所写的博士论文就是关于电疗法的研究,论述了电在医学中的应用。1800年他成为斯德哥尔摩外科教授的助手,但是同时他也和一位年轻的矿业主魏特森格共同进行一系列化学研究。1805年他被任命为斯德哥尔摩东区的“穷人医生”。显然他在这段时间仍继续进行着化学研究。1807年他成为卡罗林斯卡医学院的化学教授。他在这个岗位上的第一项研究工作是关于矿石的成分问题,但很快就转到了无机化学分析。他建立了严格的崭新的化学实验标准,改变了当时的化学研究方法。1832年,由于瑞典教育委员会不同意学院和完全大学享有同等地位,他辞去了学院教授职务。他在晚年,1835年,才和伊丽莎白·玻平斯结婚。这时他已享有很高的国际声望,在他的婚礼上,他被封为男爵。虽然他的名声很大,荣耀无比,但他在老年郁郁不乐,他曾说:“天知道,一旦老了会发生什么事!你工作呀,工作呀,忙碌一生,干了许多大事,可能总结结果是什么也没有。”他逝世于1848年。

  贝采利乌斯在上中学时,在一位自然史老师的影响下,对自然科学产生了兴趣。17岁时,他考人乌普萨拉大学医学系,一边学习,一边当家庭教师。在这里,他有幸结识一位化学教授,学到了一些化学知识和实验技术,并对化学产生了浓厚的兴趣。

  化学研究在1810年开始感到了实验方法中的严重缺陷。道尔顿天才地从非常不准确的实验数据中初步归纳出了元素的结合是原子和原子的化合。考虑到各种元素原子的重量各不相同而形成如下假说:组成一定化合物的各元素成分之间存在着一定的简单的重量比例关系。当时对这个问题的分析推理形式大致如下:如果氢氧化钠是由包含一个钠原子,一个氢原子和一个氧原子构成的原子团组成,其中钠原子重量为氢原子重量的23偌,氧原子重量为氢原子重量的16倍,那么凡是氢氧化钠样品,所得其钠、氧、氢的原子重量比例关系就应该是23∶16∶1。接着对大量化合物进行分析比较,猜出其组成元素的原子量,再把分解化合物所得的每一种元素的重量除以相应的原子量,就能找出该化合物最基本的原子团结构的化合成分。后来把这种最基本的化合物原子团称为“分子”。例如,硫的原子量是氢原子量的34借,在分析硫化氢样品中得出氢的重量为0.04克,与其相化合的硫的重量为0.68克,于是0.04/1∶0.68/34=2∶1,这就是硫化氢中氢原子和硫原子的组成比例。

  1802年,贝采利乌斯通过了论文答辩,被任命为斯德哥尔摩外科学校的助教。在教学之余,投身到化学实验中,第二年就发现了新元素铈。1806年,贝采利乌斯被任命为该校的化学讲师。

  柏济力阿斯想尽量摆脱当时使用的化学分析法的缺陷和不准确性。他开始给军事学院和医学院的学生编写化学教科书。当他试图把现存的有关定量分析的数据整理出一个系统或顺序时,发现这些数据不仅是紊乱的,简直是相互矛盾的。把结果和各种化合物相对照时,矛盾百出。按道尔顿创立的原子论,化合元素之间的关系有严格的要求,如果已知一定重量的A元素和一定重量的B元素相化合,同样,它又和一定重量的C元素相化合,那么B元素和C元素如果化合在一起,其重量比例关系也应该是一定的,或者是它们分别和A元素化合时的比例一样,或者是那些重量的整倍数,因为这里要考虑到B元素和C元素相化合时,与它们分别和A元素化合时的原子数有可能不相同。但是,如上所述,柏济力阿斯发现,不可能把这些重量的测量结果和假说的要求相一致起来。这样就促使他开始考虑测量的精确性问题。大约就在1810年,他意识到化学的进步要求有一种新型的化学实验,即十分精确进行测量的实验,只有通过这种实验,关于化合物的原子成分的假说才能被证明可信。他经过十年专心致志的努力,终于达到了这个目的。

  1807年,道尔顿的原子论发表后,贝采利乌斯进行了研究,并立即接受了,但他觉得道尔顿的原子量测量不精确。这一年,他被任命为斯德哥尔摩大学的化学教授,开始了原子量的测量工作。

  首先用原子论解释化学的道尔顿,以及开创定量分析化学化沃拉斯教授都相信化合物元素的重量比是整数关系,例如为1∶1,1∶2或者3∶2等等。这可直接从原子论得出,根据假说,化合物中各元素的原子量是不同的但是恒定的。柏济力阿斯熟悉上述这些英国化学家的著作,也知道盖—吕萨克关于气体合成的成功证明,按容积的整数比例,用两个单位容积的氢和一个单位容积的氧化合而得到水。要知道,我们现在所熟悉的原子和分子的区别,在当时还没有说明。考虑到氢氧气体这种容积关系,柏济力阿斯相信,永久气体,即没有被液化的气体的相同容积,在同样的温度和压力下,包含着相同数目的原子。所以在化学研究中发现化合体积和重量之间的整数比。这种观念后来以更精确的形式结合在化学理论中,成为亚弗加德罗假说。虽然后来表明这种观念是不完善的,但它却是柏济力阿斯达到目的的理论基础,使他能够预见化合元素重量的整数比,阐明有关“正确测量”的思想。

  道尔顿的原于量是以氢作为基数1而间接推算出来的。贝采利乌斯认为氢只能与少数的元素结合成化合物,那些不能与氢化合的元素原子量就难以测定了。而与氧结合的元素要比与氢结合的元素多得多,因此应该以氧的原子量为基数。

  当测量得出了符合原子理论要求的整数比,才可以认为测量是正确的。柏济力阿斯在自传中写道:“我不得不使用各种方法进行无数次的反复分析,以便找到一种方法,它能给出最肯定最正确的结果。”即与原子理论相符合的结果。柏济力阿斯并不是发现了元素的化合是按照整数比,而是假设元素就是按照这种方式化合的,然后通过不断改进和完善自己的实验方法和实验技术,直至得出和理论相符合的结果为止。

  在贝采利乌斯测量原子量时,条件是非常差的,一是仪器设备较简陋,一二是缺乏试剂,就连分析用的盐酸都要亲自制取,但他有奉献的精神、满腔的热情、惊人的毅力、高超的技巧、不依靠助手的帮助,独自进行了浩繁的原子量测量工作。

  他成功的秘密是精益求精的完美主义。他曾说:“最初,我的希望没有成功,因为我还缺乏关于精度要求的经验,也缺乏怎样才能达更高精度的经验。”他对这种困难的回答是密切注意实验中的细节问题,把实验设备设计得尽可能完善,使实验过程中避免化合物质的损失。要求纯度的化合反应中使用的容器口必须带唇,使倒出的溶液最后一滴也能滴下来。过滤纸不仅要符合没有灰尘的标准,而且建议,在使用前将它浸湿,以避免溶解于溶液中的化合物质被纸纤维少量吸收掉。此外,操作必须细心准确,这包括观察实验中大量的细节问题,如果稍有疏忽,往往就会前功尽弃,毁掉几个星期的辛勤工作。

  1813年,贝采利乌斯准备发表他的原子量测定报告,由于当时化学界使用的元素符号和化学式不相同,他感到有必要建立一个统一的符号系统。

  原子量的确定取决两件事,首先需要知道化合物中各种元素的相应的原子数,例如,锌氧化物,是ZnO,ZnO或是ZnO等等。其次需要知道化合物

  贝采利乌斯最早使用了字母作为元素符号,规定每种元素的拉丁名称的开头字母作为元素的代号。如氧的拉丁名称是Oxygenium,它的元素符号就用第一个字母“O”来表示。

  2    2中各种元素的化合当量。既知道氧化锌中的锌和氧的化合当量,又知道氧化锌是一个锌原子和一个氧原子所组成,那么各元素的化合当量也就是各元素的原子量。所有各种元素的原子量与氧原子量相比较得出的结果就是它们的标准原子量。

  如果拉丁名称的第一个字母相同,就在第一个字母后加上第二个字母或者别的字母加以区别,如:用B表示硼,用Bi表示批,用Ba表示钡,用Br表示溴。这套符号一直沿用至今。

  柏济力阿斯得出精确原子量的基本方法利用的是氧化物来取得结果。因为所用的这些氧化物比较普通,而且还比英国喜欢用的氢化物更容易操作些。但是氢化物应用得也相当普遍,所以柏济力阿斯给出的最后结果,既按氧的标准,也按氢的标准。可以用一定量的金属和氧化合成一定量的氧化物,也可以用一定量的氧化物还原成一定量的金属和氧。柏济力阿斯所选用的具体方法取决于操作简便和所得误差小。

  贝采利乌斯还把他的元素符号运用到化学式中。

  推算很简单,化合比就是:

  贝采利乌斯对2000多种化学物质进行了分析,把当时已知的40多种化学元素的原子量进行了较为精确的测定,他花费的劳动量可想而知。

  氧化物的重量       金属的重量

  辛勤的劳动结出了丰硕的成果,1814年、1818年、1826年,贝采利乌斯先后3次发表了原子量表。精确度达到小数点后第三位,绝大多数数值和现代值相差极小。

  如果原子数量比已从其他的分析比较知道了,那么计算原子量比就更容易,例如,氧化物所包含的是两个氧原子和一个金属原子,那上述比就必须再除以2。

  贝采利乌斯在原子量方面做出了卓越的贡献。

  柏济力阿斯曾介绍过他是如何找出氯相对于氢和氧的原子量的。他在他的《化学论文集》第五卷中说道:“我是通过如下实验来确定氯原子量的:

  贝采利乌斯在物质分析中,发现了一些化学元素。1803年发现了铈,1817年发现了硒,1823年发现了硅,1824年发现了钽,1828年发现了钍。

  (1)从100份干蒸馏无水氯酸钾得出38.15份氧,并剩下60.85份氯化钾(经四次测量,结果相符);(2)从100份氯化钾可以得到192.4份氯化银;(3)从100份银可以得到132.175份氯化银。如果假设氯酸是由2Cl和5O组成,那么由上述数据得到1个氯原子量为221.36;如果按盖—萨克获得的密度计算,氯原子则为220(相对于氧原子量计算);如果按氢原子量为标准计算,则为17.735。”

  贝采利乌斯还指导学生发现了新元素。塞尔斯达姆在研究铁矿时,发现一颗不寻常的黑色颗粒,便预感到这是一种新元素的化合物,便和老师共同分析研究。连日来的实验,使塞尔斯达姆失去了信心,因家里有事便回老家去了。

  这一段文字说明,推理很简单,但操作必须仔细。为了最终获得氯元素相对于氧元素的原子量,不得不进行多次不同的测定,每次都要尽可能准确。柏济力阿斯的结果和现代的测定结果十分吻合,但它只是现代值的一半,原因在于标准氢的计算方法不同。没有区分原子和分子之前,自然是把氢作为单原子气体。如果认为氢的最终粒子是原子,氢H就是单一的。我们现在知道,氢是以分子H形式存在的,是两个原子,所以当时把2H=1来作为标准

  学生走了。但老师仍然耐心地研究着,不久,终于发现了钒。

  2了,柏济力阿斯就是这样做的。现代经过修正得出氯原子相对于氢原子的原子量为35.47。

  从钒的发现过程来看,它可以说是贝采利乌斯发现的,而他非常谦逊,把这一发现让给了塞尔斯达姆一人独享。

  从科学方法的角度来看,值得重视的是柏济力阿斯对“集中”采样法的贡献。实验的采样有两种方法:一种是用大量的样品进行实验,然后通过平均结果找出典型特性,这叫做“扩大”采样法;另一种是只选取一个或少数几个样品,认为它们是典型的,用它们实验所得的特性就能代表相似样品的特性,这称为“集中”采样法。关于柏济力阿斯,正如麦卡内汶所说:“看来,对于他来说,选择适当的分析方法比整天重复进行测量要重要得多,他很少重复测量,一旦完成测量后,他不是准备去重复检验,而是准备为它的可靠性进行辩解。”

  贝采利乌斯除了精确地测量原子量、创立科学的元素符号和化学式、发现一系列的元素外,还探讨了物质结构理论。

  到1818年,柏济力阿斯已准备好公布他已知道的45~49种元素的原子量。他后来的一生还是继续为改善和扩大这些成果而努力。

  在1812年,贝尔利乌斯发表了以二元学说为基础的电化学说,认为任何物质都是由带正电和带负电的原子相互吸引而形成的,一切化合物的亲和力,在本质上都是静电力和两种相反电荷的相互吸引。

  柏济力阿斯不仅是一个优秀的实验家,而且他还象戴维一样发展了化学电学理论,使这种理论具有更精确的形式。他说:“原子包含着两种不同的电荷,分别在不同的电极处产生出来,其中一种起着主要作用。化合就是不同元素粒子带电极性不同而相互作用的结果,所以所有的化合物都是由两部分组成,其每一部分的带电性质不同,互相吸引而结合在一起。反之,所有的化合物都可分解成两个带相反电荷的元素组成部分。”

  贝采利乌斯最早在互806年引用“有机化学”的概念,认为它是研究动物、植物有机体的化学,从而和无机界的矿物化学相区别。还提出了催化剂的概念,在1830年还研究了物质结构的同分异构现象。

  这是一种强有力的理论,与无机化合物情况非常一致。但是利伯格发现,氯原子能够在有机化合物中一个个地取代氢原子,这使柏济力阿斯理论暂时受到冷遇(但却使利伯格受到柏济力阿斯的长期冷遇)。如果氢是带正电的,在另一种化合物中取代它位置的任何元素的原子,按柏济力阿斯理论,应该也是带正电荷,因为它需要和组成部分所带的负电荷保持平衡。氯能够取代许多碳氢化合中的氢,这一事实看起来与柏济力阿斯理论是直接抵触的。

  贝采利乌斯很重视教学,编写了《化学教程》,培养了莫桑德尔、维勒等一批著名的化学家。

  最后,还必须提一提,柏济力阿斯所编写的化学年鉴总结评述了整个欧洲在27年中化学的进展,对后来化学发展和化学工作者产生了广泛的影响。

  贝采利乌斯既是理论化学大师,又是实验化学大师,是永放光芒的一代宗师。

  柏济力阿斯的方法是依靠测量的精确性,有了这种精确性,他才能够推断出化合物中原子量的比例关系,但他也能利用更直接的方法来检验某些元素的原子量。后来杜龙和佩蒂特改进了这种检验技术。他们在考察道尔顿关于所有气体的原子热容量与原子大小有关的想法时,发现按这种假说应得的结果与实际结果相差很大。在此工作过程中他们发现了一个重要关系,就是原子量和比热的关系 (比热就是单位质量的温度升高一度所需的热量),后来证明,这种关系只适用于固体物质,成为原子的热定理,并弄明白了每种物质的原子量和它的比热的乘积是一个常数。他们还在雷格诺尔特的帮助下检验了柏济力阿斯的结果,发现有些数字应加倍,有些应减半,例如,银和硫的原子量就有这样的错误。虽然他们的定理的确能在一定程度上直接检验柏济力阿斯的结果,但遗憾的是也有例外,并不能作为完全可靠的指南。随着化学知识的增长原子和分子的区别明确了,加上测量技术的进步,在19世纪弄清了绝大多数异常的问题,但为什么赢得的原子量不完全是整数?还有待进一步解释。

  1848年8月7日,辛勤劳动一生的贝采利乌斯,终于能够安静地“休息”了…

  1886年,克鲁克斯第一次提出了某些元素可能是由更基本物质组成的混合物,这些更基本物质的原子质量,如普劳特提出的那样是和氧原子质量成整数倍数的。但这种想法一直到阿斯登发明摄像仪才被证明。阿斯登发展了汤姆生研究电子物理特性的电磁场设备,使其能够分离与电荷相同但质量不同的原子。以前这样的原子,例如说氖原子,都认为是同样的原子。产生紊乱的原因就在于原子的化学性能主要取决于它们的电子,而几乎不取决于它们的质量。偶数原子,即具有偶数电子的原子元素倾向形成两种同位素,每种同位素的原子量都只是接近整数。柏济力阿斯仔细计算出的原子量是这些同位素的混合原子量。自然界中所发现的各种元素是由不同比例的同位素所组成的。这就是为什么像柏济力阿斯那样精细的人所得出的氯原子量也还是一个带小数点的数35.47(按现代的氢原子标准计算)。

  贝采利乌斯用分析方法、戴维用电解法分别发现了很多元素。

  在上述实验中,我们看到了测量技术的改进过程是根据一种“正确结果”的想法来进行的。没有怎样才是正确的这种概念,就不可有正确或不正确的判断。柏济力阿斯只有在原子理论的指导下才能预见和修正他的实验结果。

  19世纪,英国的武拉斯顿、台耐特和俄国的克劳斯,进一步发现了钯、铱、锇、铑、钌等元素。

  物质的波动性和第三量子数

  法国化学家库特瓦和德国的罗威分别发现了碘和溴。

  1888年,奥托·斯特恩出生在德国的西里西亚省的斯赫劳。他的父亲是一个买卖兴隆的粮食商兼磨坊主。家境富裕大大有利于斯特恩从事科学事业。他是家中五个孩中最大的一个。他的中小学教育是在布列斯劳 (现在在波兰境内)完成的。从1906年开始,他以当时时髦的方式遍游德国各个大学,同时在弗雷堡、慕尼黑和布列斯劳也做一些工作。他是一个无忧无虑的,无所牵挂的年轻人,比当时德国的绝大多数大学生都自由。他随心所欲从事一些与其事业并无直接关系的工作。由于他对热力学感兴趣,促使他回到了布列斯劳,因为那里有一所重点研究热力学的物理化学学校。就是在那里,于1912年他获得了物理学博士学位。

  法国的另一化学家莫瓦桑还成功地制得了最难分离的氟。

  在这一年,他开始受到爱因斯坦的影响。他和爱因斯坦一起到布拉格工作,    1913年又一起迁到苏黎克。斯特恩对爱因斯坦的分子研究比相对论更感兴趣。1914年,他和马克斯·博恩相识,并开始在一起工作。就在这一年,他被批准为无薪俸的大学讲师。

  氟的化学性质非常活泼,且有剧毒,要制取它十分不易,充满危险。虽然在18世纪末期就已发现了它的存在,科学家们通过奋斗和牺牲,一直制取不出来,被视为科学研究的“死亡之路。”

  第一次世界大战期间,斯特恩虽在军队服役,但仍继续着他的科学研究工作。他在波兰当了一段时间的气象员,到战争最后一年他被抽调到柏林的纳恩斯特实验室工作。

  从1884年汁始,法国的莫瓦桑以超人的胆略,知难而上,决心征服这个元素。他在实验中虽有失败,但终于在1886年首次制得了单质氟。

  战后,他发明了分子束方法,研究自由原子,模拟光线。在这里要介绍的原子束实验是他证明物质波动性的基础。在古典物理学中,物质被认为纯粹是微粒。1923年,他搬到汉堡,建立了自己的实验室,更多更新的设备使他有可能进一步发展他的分子束方法,最后真正证明了物质的波动性。

  除了分析法、电解法,人们还用光谱法寻找新元素。创立光谱分析的是德国化学家本生和物理学家基尔霍夫。

  面临纳粹制度的威胁,斯特恩于1933年离开德国,迁居到美国,在卡内基研究所工作。他和被希特勒赶出的某些德国人不一样,虽然离开了祖国,但从未停止过工作。1943年,他荣获诺贝尔奖金。1946年,他在加利弗尼亚州的伯克莱退休,1969年,在该地逝世。

  在1811年,德国的哥廷根诞生了一个婴儿,他就是后来成为著名科学家的本生。1830年,他获得博士学位,即从事化学研究,为科学事业奋斗终生。

  斯特恩从他自己发明的分子束设备的发现与其埋头所检验的假说问题有关。这些假说与传统的物理学背道而驰。尼尔斯·博尔在卢瑟福证明原子核形式的启示下,发展了原子的电子理论。如果原子的正电荷和绝大部分质量都集中在小小的原子中心或原子核内,那么便可假设原子的其余部分质量和相应平衡的负电荷就应该分布在原子核的周围。自然就会把电子看成很小的带电体,并可想象它们像行星一样绕原子核旋转。这种概念提出了一系列从属概念和问题。如果说电子有轨道,那么这些轨道在空间又是怎样分布的呢?如果说电子是沿着那些轨道旋转的,那么其角动量,即旋转的原动力又是什么呢?如果轨道位于一个或几个平面之内,像太阳系的行星轨道一样,那么这些平面的相互关系又是怎样的呢?最后,如果电子是能够绕自轴旋转的小小带电体,那么它们自旋的方向又是怎样的呢?

  1853年,他发明了“本生灯”,也就是煤气灯。他用煤气灯做实验时发现,各种金属盐在火焰中呈现不同的颜色,如钠盐呈黄色,钾盐呈紫色,钡盐呈绿色。

  博尔提出,炽热的气体和固体放射出光可以解释为是电子改变了自己的轨道,并在改变轨道过程中释放出能量,这些能量就等于放射的光的能量。但是在早些时候就已经知道,白炽的物质所发射出的光似乎并不具有连续的光谱,而是个别波长的光谱。为解释这种现象,博尔提出,电子只能机械地具有某几个可能的轨道,这几个可能的轨道数被称为“基本量子”数n=l,2,3……。量子一词的意思是指当电子从一个固定轨道跃迁到另一轨道时,以一定波长的光线形式所放射的不连续的一束束能量。

  本生把这一发现告诉了朋友基尔霍夫。他很感兴趣,两人决定共同研究化学物质的光谱。

  原于现象的进一步研究表明,还应该存在着第二量子数。电子似乎不只有某一个角动量,而且还以某几个固定速度沿轨道旋转。原子的这一结构特性就以字母L来代表。L和n可以相互联系起来,因为所允许的角动量只能以从0到n—L之间的整数来代表。

  1859年,他们把望远镜和三棱镜联合起来,创制了分光镜。用分光镜可以精细地观察各种金属元素所呈现的分立的彩色线条,这些线条叫做谱线,故称“线状光谱”,这与7色依次相连的太阳光线是不同的,太阳光线称之为“连续光谱”。

  行星运动的其他主要特性,轨道平面的方向和自转方向,是不是也能从电子运动中得出呢?能不能弄清楚电子轨道只能在几个固定的平面之内呢?是不是也能弄明白电子自旋是量子化的呢?为表示这些可能的特性,又提出了两个量子数,一个是m,代表电子的“空间量子化”,即代表电子轨道平面和某一固定平面,如外面强加的磁场,所形成的几个允许的角度。第四量子数s代表电子只能绕某一固定轴顺时针或反时针旋转,后来被称为“上旋”或“下旋”。看来电子的所有性质用这四个量子数都能代表了。

  他们用分光镜研究了一系列元素的线状光谱,认识到每种金属元素各有其特征的谱线,并且不受其他元素的于扰,不受含量多少的限制。这就为人们寻找含量稀少的新元素,提供了可靠的手段。

  这些量子数是把电子运动当做粒子运动来考虑,看一看传统力学原理需要做什么改变,才能符合它们的特性。但是早已表明,电子束遇到障碍时,表现出了特别奇怪的性状,它们既有波动的干涉效应,也有波动的绕射现象。这种特性使当时的标准物理学发生另一个根本的改变,寻找某种可能的方法,把粒子特性和波动特性综合起来。德布罗格利提出,传统物理学中两个单独的,毫不相关的特性应该统一起来,使它们可以转换,于是他把波的波长和粒子的质量m,速度v,用以下公式联系起来了。

澳门威斯尼斯人网址:原子论的创立,世界科技全景百卷书。  1860年5月10日,他们利用分光镜从矿泉水中,发现了金属元素铯。1861年2月23日,他们又从锂云母矿中,发现了金属元素铷。这两个元素的光谱呈现美丽的蓝线和红线。

  λ=h/mv

  1861年,英国物理学家、化学家克鲁克斯,利用光谱仪测定制备硫酸的剩余残渣的光谱时,发现了一条明亮的绿色谱线。他经过分析研究,断定这是一种新元素发射的,把这种新元素命名为铊。

  此处,h—普兰克常数。这个关系式是不是不仅适用于电子,而且也适用于原子、炮弹、行星等等而普遍成立呢?很明显,斯特恩分子束可能是检验这种想法的一种好方法。如果一束分子能够产生绕射现象,那么德布罗格利原理就将具有更大的意义,而成为一个普遍的物理学定理。所以分子束被用来检验这种想法。

  1863年,德国化学家赖希发现了新元素铟。

  从物理学发展的前后关系中可以看出,斯特恩实验所具有的重大意义,但是还不止此,它还说明实验研究中的另一个有趣问题,就是某些技术设备具有提供一系列问题的巨大能力,而在发明这种设备的时候,往往没有想到它会具有这样的能力。

  这样,通过不断的分析研究,到19世纪60年代,人类已经发现60多种化学元素。

  斯特恩—格罗克设备主要由三个可以拆换的分设备组成:一个是获取等速分子 (或原子)束设备,另一个是产生陡变磁场设备,第三个是用金属晶体作成的格棚绕射靶,如果德布罗格利所决定的特性关系是正确的话,原子束波就会发生绕射。

  化学元素的分类

  为获取适当的原子束,斯特恩及他的助手格罗克利用一个小坩埚,装上相应的样品,进行高温加热。坩埚开有一小缝通真空室,在高温推动下,样品物质的原子从缝中逸出就形成原子束,不过其中的原子具有不同的能量或速度。为获取等速的原子,阻止其他速度的原子,他们采用了费泽奥测光速的办法。问题在于原子的速度很高。如果两个槽轮装配在同一轴上,让它们各自向相反的方向转动,那么就只有那些正好在一个槽取代另一个槽的时间内越过两轮之间距离的原子才能顺利通过。这样通过的原子就具有大致相等的速度。

  随着时间的推移,人们发现的元素不断增加,对元素性质的认识也不断深入。

  他们的智慧也表现在他们发明的第二个设备,即高强度磁场设备中。因为原子束通过磁场很快,为了产生和辨别出通过时有什么效应,例如说,由于空间量子化的神秘特性而使原子束分裂,磁场必须强而集中。为此他们把一个极做成像刀刃一样,另一极做成尖槽形,让原子束沿着这样狭窄的缝隙通过,就能产生最大效应。

  那么人们不禁要问,自然界到底有多少元素?元素之间有没有什么关系?当时人们在测定元素原子量的同时,开始对元素进行分类研究。

  他们用以探测原子束绕射的设备,没有新的特殊性,使用的是埃尔萨塞发明的电子绕射基本技术。这种技术由戴维森和杰默在1927年进行了改进,所以当斯特恩在1929年与斯特曼合作研究原子绕射问题时,就直接借用了这种技术。他们用锂晶作为绕射靶,用一个小室收集绕射的氦原子,绕射原子的数量通过测定小室的瞬时压力变化来确定。

  最早把元素分类的是法国的拉瓦锡,把他认为是元素的33种元素分为4类:金属、非金属、气体、土质。这个分类只能是个尝试,其中有很多不是元素,也没有触及到元素之间的内在联系。

  所有这些方法一旦被想出来,设备也建立起来,实验本身就非常简单了。这反映了实验家的聪明才智。因为运动的电荷会产生磁场,而轨道电子是一种电荷,并且根据原子理论它们在不断运动着,所以它们应该产生各自的磁场。如果每个原子的所有电子的轨道仅在量子理论可能允许的一个平面内,那么每个原子的磁场就与该平面相关。于是,当有一个外磁场影响这些原子时,它们就会随其内磁场的情况对那个外磁场取一定方向。

  瑞典化学家贝采利乌斯把元素分为3类,即负电性元素、过渡性元素、正电性元素。他试图以元素的本质来分类,稍微有些进步。

  如果存在如我前面说过的空间量子化,那么我们所想象的原子这样的小磁体的取向就不会是任意的,例如说“全是顺时针方向”,在斯特恩所研究的具体情况下,它们相对外磁场取两个不同角度。这和按第三量子数计算结果相符。每一个取向相对应于一个可能的电子轨道平面。

  1851年,英国医生普劳特第一次试图把所有的元素统一在一定的秩序下。他根据当时测定的原子量都近似整数,并且是氢原子量的整倍数,提出所有元素都是由氢原子构成的假说。

  如果关掉外磁场再看原子束的图像,在照片上就只能看到模糊的单影;但是如果打开外磁场,原子束就立即分裂成两半:一些原子随其相应的量子化情况走一条路,另一些原子也随其相应的量子化情况走另一条路。这就是斯特恩所发现的现象。

  普劳特假说过于牵强,当然不能成立,但他第一次从原子量方面来研究元素之间的关系,影响较大。

  物质波动性的证明也很直截了当。埃尔萨塞,戴维森和杰默已经用实验表明,电子能够绕射。很明显,这证明电子具有某种波动性,但这还只是一种特例,还不能作为一般物质都具有波动性的证据。毫无疑问,电子在一种情况下具有物质粒子特性,在另一种情况下,又具有波动特性。但氦原子是一种比较重的普通物质原子,如果它们也表明出绕射效应,那么德布罗格利关于物质都具有波动性的定律就更加牢固地建立了。

  1829年,德国化学家德贝莱纳在探索元素的原子量和其化学性质相互关系的基础上,对元素进行局部分类,提出“三元素组”的分类法,从已知元素中抽出15种,分为5组:

  为了进行这种实验,他们把设备作了重新安排。原子束发生设备和一对开槽轮仍用来保证获得等速原子束,另外再安装上锂晶靶,原子绕射探测器。如果原子束像粒子流一样机械反射,那它就会像皮球碰到挡板一样反弹回来,反射角就大致等于入射角。但是如果它像波一样绕射,那么就会像绕射波前一样有绕射原子散布。这里再次表示出,斯特恩所设计的实验,是直截了当回答问题。

  第一组:锂钠钾

  毫不奇怪,虽然前一两代物理学家几乎不能理解这些实验,但斯特恩和埃斯特曼却正好找到了他们所预料的结果,收集绕射散布原子的小集气罐的压力变化形式,升到某一顶点,正好说明氦原子束具有波动特性。

  第二组:钙锶钡

  分子束实验法像斯特恩的学生又有学生一样在连续不断的发展。设备更加完善,出现了测量各种物质的原子束效应的新方法,但是不管又做出了多少出色的工作,这个领域的主要成就仍然是其奠基者斯特恩所取得的。

  第三组:氯溴碘

  即使是汤姆生和卢瑟福所做的关于亚原子粒子特性的一系列令人信服的证明,也可能被新概念推翻。德布罗格利定律普遍适用于所有物质,就是比较重的整个原子也可能产生波动效应。发现这种效应所产生的结果和影响,目前还没有全部吸收到关于自然科学的哲学思想中来。实践的考验

  第四组:硫硒碲

  第五组:锰铬铁

  德贝莱纳发现,原子量相近的元素,其性质也比较接近,在上面划分的5组中,同组元素的性质相近,中间一个元素的性质介于前后两个元素之间,而它的原子量正好是前后两个元素原子量的算术平均数的近似值。

  “三元素组”分类法,向人们揭示了元素的原子量和元素的性质之间确实存在着内在关系,为人们指明了探索元素规律的方向。

  1850年,德国药物学家培顿科弗提出,性质相似的元素原子量相差常为8或8的倍数,井对“三元素组”分类法进行了修正,把一些原子量相近、性质相似的元素加进相关的组中去。

  另外还有法国化学家尚古多把元素按原子量大小排列的螺旋图,英同化学家纽兰兹把8个元素按原子量递增排列的“八音律”等等。

  在化学元素周期律最后完成之前,人们对元素的分类不下50种,有些比较牵强,有人挖苦地说:“把元素按字母顺序排列起来,是否能得出什么规律呢?”

  但人们对元素规律的探索,为最终的元素周期律打下良好的基础。正是在这样的条件下,德国化学家迈尔和俄国化学家门捷列大最后完成了化学元素周期律。

  1830年 8月19日,罗塔·迈尔生于德国奥顿堡,父亲是医生,母亲是护士。由于家庭环境的影响,迈尔上了医学院,在 1854年获得医学博士学位,但他并不喜欢医生这个职业,而对化学兴趣极大,于是在毕业后并没有开业行医。

  迈尔来到海德堡大学,著名化学家本生和他的朋友基尔霍夫正致力研究光谱学,影响很大、迈尔拜他们为师,努力学习化学知识,并学到了一定的实验技术。

  1858年,迈尔被聘为布累斯劳大学的物理化学讲师,教学之余,也加入了元素规律研究的行列。

  1864年,迈尔出版厂《近代化学物理论》一书,发表了第张化学元素周期表。

  这是迈尔在详细研究各元素物理性质的基础上,按照元素原子量的顺序编排的“六元素分类表”。这个表只列入了当时已经发现元素的一部分,表中留有一些空格,表明他认识到还有一些元素有待发现。

  迈尔已清楚地认识到原于量和元素性质之间的内在联系,明确指出:“在原子量的数值上具有一种规律性,这是无疑义的。”

  这个表按原子量排成顺序,对元素的分族作得已经很好,有了周期表的雏形。只可惜表中元素还不及当时已知元素的一半。

  揭示元素周期律

  德米特里·伊万诺维奇·门捷列夫,1834年2月7日生于西伯利亚的托波尔斯克,父亲是中学校长。

  1841年秋天,不满7岁的门捷列夫考进了托波尔斯克中学,成为当地的一大新闻。由于年龄太小,需要在中学一年级学习两年。他十分爱好数学、物理和地理,成绩优秀,父母为儿子的聪明和好学而自豪。

  门捷列夫非常喜爱大自然,他和老师一起外出旅行,采集花卉和昆虫标本,深得老师的器重。

  1847年,门捷列夫的父亲去世,第二年他母亲经营的玻璃工厂也失火倒闭。

  1849年春,门捷列夫中学毕业了。老师们都说他具有卓越的才能和智慧,将来一定很有出息。母亲也了解儿子的志趣,希望儿于能成为科学家,便带着他到莫斯科求学去了。

  然而,莫斯科大学并不欢迎这位西伯利亚的乡间少年,因他不是豪门贵族出身而拒绝让他入学。

  他母亲不气馁,又带着他去了彼得堡。幸好他父亲有一位朋友现在身居要职,帮助门捷列夫进了彼得堡师范学院物理系。

  在学院一些有名望的教授和物理学家椤次、数学家奥斯特罗格拉德斯基、地质学家库托尔加等的指导下,门捷列夫一方面受到了良好的科学教育,特别在矿物化学方面打下了坚实的基础,另一方面开始了创造性的科学研究。

  1854年,门捷列夫以优异的成绩从彼得堡师范学校毕业,前往敖德萨一所中学任教。在1855年5月,他荣获了“一级教师”的光荣称号和金质奖章。

澳门威斯尼斯人网址:原子论的创立,世界科技全景百卷书。  在此期间,道尔顿的原子论和贝采利乌斯的二元学说,引起了门捷列夫的极大关注,促使他探索物质的内部奥秘。他一边教书,一边准备硕士论文。

  1856年,门捷列夫顺利通过彼得堡大学的硕士论文答辩。第二年初被批准为彼得堡大学的化学副教授,时年23岁。

  门捷列夫讲授的是理论化学和有机化学,教学工作非常繁忙,但他主要把精力放在科学研究上。当时,研究条件是非常差的,他的实验室是石头铺的两间小房子,设备非常简陋,连基本的试管也很少。

  俄国当时的科学发展水平也很落后,无法和西欧一些国家相比。这些常常使门捷列夫感到苦恼。1859年,他获得去德国海德堡大学深造的机会,跟随著名化学家本生研究物理化学。

  1860年9月,国际化学会议在德国的卡尔斯厄召开,门捷列夫也出席了这个盛会。在会上,化学家们广泛地探讨原子、当量以及分子、原子价等问题,并希望统一化学符号。

  门捷列夫得以全面了解欧洲化学的实验水平和理论现状。特别是意大利青年化学家坎尼查罗不畏权威,力陈阿佛加德罗的分子观点,给门捷列夫留下了为真理而斗争的伟大形象。

  1861年,门捷列夫回国。为了反映化学新成就,他着手编写教材。但在编写的过程中,如何排列已发现的63种化学元素呢?

  当时,大多数科学家热衷于研究物质的化学成分,醉心于发现新元素,但很少有人整理和概括这方面的材料。虽然一些有识之士也曾探索这方面的理论,由于存在这样或那样的缺点,不断遭到攻击,研究的人越来越少。

  门捷列夫知难而上,渴望能在理论上有所建树。这需要多么大的勇气啊!

  门捷列夫从事纯理论工作,没有得到德高望重的前辈们的赞同。一位老教授劝告他不要搞这些难有结果的研究,不妨做些别的工作。就连他的老师齐宁也不支持他的工作,甚至在门捷列夫发现了元素周期律后,还毫不客气地训诫他是不务正业,希望他干点正事。

  门捷列夫坚持自己的奋斗方向。

  他说:“当我在考虑物质时,总不能避开两个问题:物质有多少和物质是怎样的?就是说,有两个概念,物质的质量和化学性质。我相信物质质量的永恒性,也相信化学元素的永恒性。因此,自然而然地产生出这样的思想:在元素的质量和化学性质之间一定存在着某种联系。”

  于是,门捷列夫紧紧抓住原子量这个元素的基本特性,去探索原子量和元素的性质之间的相互关系。

  在这个过程中,首先对前人的工作进行了认真地核对,批判地继承了前人的成果,又对所掌握的大量资料进行比较、核对和验证,进行去粗取精、去伪存真的整理工作。

  在研究元素的原子量和原子价时,为了便于排列,门捷列夫把每个元素制成一个卡片,上面详细地注明他们的原子量、原子价、溶解度及性质,然后按照原子量的大小摆满了宽大的实验台。

  门捷列夫的家人看到一向珍惜时间的教授突然热衷于“纸牌”游戏,感到非常奇怪。而他却拿起卡片像玩牌一样,一会摆到这儿,一会摆到那儿。

  通过对卡片深人的研究,他发现各种元素的原子量可以相差很大,而不同元素的原子价变动范围却比较小。而且有许多元素具有相同的原于价。

  在比较同价元素的性质时,发现它们的性质非常相似,而且所有1价元素都是典型的金属,7价都是典型的非金属,4价元素的性质介于金属和非金属之间。这使他坚信各种元素之间一定存在着统一规律性。

  门捷列夫把元素按原子量的大小排列起来,发现像氯和钾这两个性质截然不同的元素,其原子量相差不多。而钾和钠的原于量相差很大,性质却十分相似。在钾以后的元素随原子量的增加其性质又显示出与钠到氯相类似的变化。

  这些有规律的现象的出现,使门捷列夫更坚信各种元素的性质呈现出周期性变化的规律。

  门捷列夫认为元素呈周期性变化的规律,应设法把它们排列起来。可是,排来排去都觉得不满意。夜深了,彼得堡大学的化学实验室仍然亮着灯光,门捷列夫仍在排列卡片,他已经从鲜花盛开排到落叶缤纷,从赤日炎炎排到大雪飘飘,排了一年又一年…

  这一天,他仍然在排着,已经三天三夜没合眼了,不知不觉中坐在椅子上睡着了,很快进人了梦乡,梦到了井然有序的元素周期表。

  醒来后,立即排出梦中的表,后来发现只有一处需要修正。

  这就是门捷列夫的第一张元素周期表,时间是1869年2月。

  门捷列夫制成周期表后,立即把它打印出来,分送给他熟悉的物理学家和化学家,并决定在3月份举行的俄罗斯化学学会上发表。

  化学学会召开了,由于门捷列夫患病不能亲自出席,便委托他的朋友门舒特金代为宣读了题为 《元素属性和原子量的关系》的论文,阐述了元素周期律的基本论点:

  1.“按照原子量的大小排列起来的元素,在性质上呈现明显的周期性”;

  2.“原子量的大小决定元素的特征,正像质点的大小决定复杂物质的性质一样”;

  3.“应该预料到许多未知单质的发现,例如预料类似铝和硅的,原子量位于65至75之间的元素”,“元素的某些同类元素将按它们原子量的大小而被发现”;

  4.“当我们知道了某元素的同类元素以后,有时可以修正该元素的原子量”。

  这样,门捷列夫初步实现了使元素系统化的任务,把已发现的63个元素全部列进表中。尤为注目的是,他在表中列出了4个只有原子量而没有元素名称的空位,表明门捷列夫预示必有这种原子量的未知元素存在。他还对表中的钍、碲、金、铋4个元素的原子量表示了怀疑。

  门捷列夫的发现没有立即被承认,甚至他的老师也不支持。但门捷列夫深信自己的研究工作具有重要意义,不顾名家和权威的指责,继续对周期律进行更深人细致的研究。

  门捷列夫从元素周期律的基本观点出发,大胆地修改了某些元素的原子量。

  他在把元素按原子量大小排列时,发现元素铍破坏了化合价周期变化的规律。同时锂与硼之间相差太大,而碳与氮之间相距太近,好像前面少了 1个元素,而后面多了1个元素,那么这个元素是铍吗?

  于是他把铍放在锂和硼之间,化合价便呈现由小到大的规律性变化,但是原子量从小到大的变化却被破坏了,便果断地把被的原子量由 13.5改为9。紧接着他重新测定了铍的原子量,果然是9.4。

  门捷列夫还对铀、铟、镱、饵、铈、针等元素的原子量进行了修改。

  1871年,门捷列夫发表《化学元素的周期性依赖关系》,制作了第二个

  “元素周期表”。

  在这个表中,他首先将元素周期表由竖行改为横排,使同族元素处于同一竖行中,更突出了元素化学性质的周期性;在同族元素中,他和迈尔一样划分为主族和副族。他还预言了未知元素的性质。

  元素周期律在化学发展史上具有重要的科学价值。从此,自然界的各种元素不再被看作是彼此孤立、不相依赖的偶然堆积,而是把它们看作是有内在联系的统一体。

  元素周期律的发现,使人们对世界的物质统一有了进一步的认识。

  元素周期表中,表明了元素性质发展变化的过程是一个由量变到质变的过程。每一周期的元素随着原子量的增加显示出性质逐渐地发生量变,到周期的末尾就显示出质的飞跃。到下一个周期不是简单的重复,而是由低级到高级的发展过程,从而反映了物质内部的本质联系,证明了辩证唯物主义的正确性。

  门捷列夫的元素周期律是19世纪科学的重要成果,对当时以及后来的化学,还有相关科学产生了深远的影响。

  门捷列夫的元素周期律为进一步寻找新元素提供了理论依据。

  他在元素周期表中留有6个空位,预言其中有3个元素的性质分别类似于硼、铝、硅,他们的原子量大约是44、68和72。

  他指出,类铝这个元素的原子量为68,原子体积为11.5,比重为5.9~6.0,它熔点低,易挥发,可希望在光谱分析中发现。

  在门捷列夫预言的4年后,即1875年,法国化学家布瓦博德朗,在分析比利牛斯山的闪锌矿时,用分光镜发现了一个新元素,命名为“镓”。他把这一成果发表在 《巴黎科学院院报》上,关于镓的几个数值是:

  原子量:69.9,原子体积:11

  .7,比重:4.7。

  布瓦博德朗发现的镓正是门捷列夫预言的“类铝”。他兴奋地看到了这一消息,但布瓦博德朗的比重是4.7,和自己预言的5.9~6.0之间相差较大,

  “肯定是他弄错了,或者是那块物质纯度不够!”门捷列夫非常自信。

  不久,布瓦博德朗收到了门捷列夫的来信。信的大意是:衷心祝贺你发现了新的元素镓,但根据我的元素周期律推测,它的比重应该是5.9~6.0之间,希望你重新测量一下。

  布瓦博德的感到非常奇怪,自己是世界上唯一拥有镓的人,这个俄国人怎么知道它的比重应该是5.9~6.0呢?于是将信将疑地重新进行了测定。

  在对镓进行进一步的提纯后,布瓦博德朗测得的比重为 5.94,正处于5.9~6.0之间。

  布瓦博德的大为惊讶,立即回信对门捷列夫表示感谢,并著文盛赞他的元素周期表的成功,并指出:“我以为没有必要再来说明门捷列夫这一理论的巨大意义了。”

  化学史上第一次预言的新元素发现了。

  镓元素的发表,在科学界引起了巨大的反响,元素周期律迅速地闻名天下,得到了人们的承认。各个国家的实验室迅速行动起来,以期发现门捷列夫的其他元素。

  在这场竞赛中,瑞典化学家尼尔森在1879年首先发现了“钪”。这是他在对硅铍钆矿石和黑稀金矿进行研究时发现的,它的特征几乎和门捷列夫预言的“类硼”完全符合。

  钪的发现又一次光辉地证实了门捷列夫的元素周期律。

  1886年,德国化学家文克勒发现了“锗”,这又与门捷列夫预言的“类硅”极其相似。文克勒大为惊奇,由衷地赞叹道:“再也没有比‘类硅’的发现能这样好地证明元素周期律的正确性了,它不仅证明了这个有胆略的理论,它还扩大了人们在化学方面的眼界,而且在认识领域里迈进了一步。”

  门捷列夫的元素周期律获得了伟大的胜利,它的天才成就得到了全世界的公认。

  门捷列夫一生著述颇丰,发表431部(篇)著作,在1869~1871年写成的名著《化学原理》,是有史以来第一部根据元素周期律安排材料的化学教程,生前再版8次,各种外文本也多次再版。

  门捷列夫的成就得到了全世界的承认,几乎所有的外国科学院都聘请他为名誉院士,他还担任了世界上100多个科学团体的名誉会员。

  门捷列夫从一个西伯利亚的穷孩子,成长为世界上杰出的科学家,是他不懈努力的结果。

  1907年1月27日,门捷列夫坐在椅子上,手里握着笔。人们发现他已经逝世了。

本文由澳门威斯尼斯人网址发布于澳门威斯尼斯人网址,转载请注明出处:澳门威斯尼斯人网址:原子论的创立,世界科技

关键词:

最火资讯